Your Body and Your Brain “At Risk” – The Business of Recalling Biomedical Implants

Proposed Abstract - Yet to be accepted for GET 2018.



Consumer electronics are “wants” bought by people who have purchasing power. These might range from human aids like calculators and robot vacuum cleaners to entertainment-driven electronics like smart TVs and tablets, to personal assistants like smart watches and fitness trackers. While most do not consider biomedical implants like heart pacemakers and brain pacemakers to be “consumer electronics”, by definition they are “a good bought for personal rather than commercial use”. The only paradox in this instance is that this suite of biomedical implantables are really “needs” as opposed to “wants”. Patients have a choice on whether or not to adopt this emerging technology, but most say that opting in is the only real option to maintaining their quality of life and longer-term wellbeing.

In the general consumer market, taking back a faulty product simply requires an original proof of purchase so an item can be validated as still being under warranty. In the case of biomedical implantables, a recipient simply cannot take back an implant for repair if it malfunctions. Biomedical implantables are willingly embedded in the body of a consumer by a surgical team, and require special expertise for removal, replacement or maintenance (i.e. upgrade). The manufacturer, for example, cannot conduct the removal process, but a surgeon with the right equipment and human resource support (e.g. nurses) can. In 2010, one supplier of pacemakers, Medtronic Inc., had to pay $268 million to settle thousands of lawsuits that patients filed after a 2007 recall of a faulty heart defibrillator wire that caused at least 13 deaths. In other cases, battery packs have failed causing disruption to consumer implants, and more recently we have witnessed software code security vulnerabilities in heart pacemakers which have meant that recipients had to undergo a firmware upgrade in a doctor’s office, a procedure that takes up to 5 minutes and is non-invasive.

On the one hand, these pacemakers are life-sustaining and life-enhancing to their recipients, on the other hand they place voluntary human implantees at some level of risk. The various types of risks will be considered in this presentation as will the impact of “recalls” on consumer implantees.

Why Privacy Experts are Concerned about IOT?

A one-day expert workshop on IOT, focusing on the role of "soft law" in IOT governance.  Attendance limit to 30 people. I will be presenting a 10 min talk on "Why Privacy Experts are Concerned about IOT?" and participating in the roundtable.

Organiser: Professor Gary Marchant

Gary is Distinguished Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability; Regents' Professor and Lincoln Professor of Emerging Technologies, Law and Ethics, Sandra Day O'Connor College of Law; Executive Director and Faculty Fellow, Center for the Study of Law, Science and Innovation.

Mobile Alerts for People who Wander: Where RFID/NFC, Biometrics and GPS meet

Primary carers of people who wander have a substantial onus to keep their loved ones and clients safe. Though patterns of wandering differ between various stakeholder types in various contexts, the two main design points include:

  1. Ensuring an individual does not go beyond the perimeters of a home (in-building) or a facility (on-campus)
  2. Ensuring an individual who has wandered can be found quickly (usually traversing a public space).

Wandering about a public space is one of the freedoms people enjoy about being alive. Whether it is a brisk walk to the local park, a bus or train trip to the beach, or aeroplane travel to various parts of the world, we can all enjoy the world around us. Walking does not require any token, travel often requires a ticket such as a TravelPass, and flying a passport with an appropriate VISA. People who wander usually do so on foot or by public transport. This session tries to narrow in to the potential for using RFID/NFC, facial recognition, and GPS to trigger mobile alerts when someone has wandered outside a minimum bounded area.

Children with autism for example, have often escaped their homes, only to find themselves in danger, either from oncoming traffic or from deep waters. Those suffering from varying levels of dementia have found themselves on public transport or disoriented at the wheel. Quite often wanderers frequent paths they know well. Wanderers who are in urban centres can have a very different experience to those in regional or rural settings. Context awareness is paramount for a carer. Is there a lake nearby? Is their busy traffic outside the family home? Is the wanderer known to people in the local community like café owners or train station attendants?

Since the early 2000s, various kinds of technological solutions have attempted to help those in need in various markets. Though we are making major inroads into what we have termed hierarchical positioning systems, most systems seem to fall short and so we still have many reports of wanderers falling to their deaths, or drowning, or suffering some other plight. The anguish for carers is significant. There is no respite for them, and the responsibility takes a grave toll on individuals.

This session will explore how technologies could be utilized to monitor people in need within the family home or institutional facility (e.g. wearing RFID/NFC tags) and furthermore how once traversing a public space the wanderer can be located. A number of factors can impact findability: morphological conditions, the individual’s agreement to wear a device, how to respond to mobile alerts once a trigger has been executed.

Participants will learn about:

-          Individual wearer responses to wearable medic alert bracelets and tag technology

-          In-building and on-campus solutions offered by BLE and UWB

-          Advances in satellite-to-base chips (GPS sensors) used by the military

-          The role of visual analytics in near real-time analysis

-          Informed consent issues, duty of care, and getting privacy right

-          Patterns of analysis in human activity monitoring and what that can tell us

-          The importance of affordable solutions for primary carers who usually do not have a full time job while they are caring for loved ones who wander

-          Coordination with emergency services for assistance in finding a missing person

Presenter: Professor Katina Michael, Faculty of Engineering and Information Sciences, University of Wollongong

Collaborator: Dr Roba Abbas, honorary fellow, School of Computing and Information Technology, University of Wollongong

Total Farm Management Practices Using RFID: Two Australian Dairy Farm Case Studies

Radio-frequency identification (RFID) has been deployed in government mandated livestock identification schemes across the world since the 1990s. RFID in its basic function can help authorities identify animals, especially when traceability becomes paramount during disease outbreaks across regions. This session provides a view of how an RFID-enabled dairy farm can leverage mobile network infrastructure towards achieving total farm management. The data for the study was collected from two case studies, both NLIS (national livestock identification system) compliant dairy farms on the South Coast of New South Wales in Australia, soon after the NLIS was mandated. The Cochrane and Strong Farms were used as models to illustrate the core and auxiliary technology components of an RFID-enabled dairy farm. Beyond satisfying the regulations of government agencies for livestock to be a part of a national identification system for tracking purposes, farmers are now venturing beyond mere basic compliance systems. Once installed, farmers have begun to realize that their initial capital investment into an RFID system holds great strategic potential. The initial outlay while substantial is a once only cost that with a few more application-centric uses can yield a return on investment manifold. This workshop session provides an end-to-end view of the infrastructure and processes required to achieve an advanced RFID-enabled state-of-the-art dairy farm.

Participants will learn about:

  • Regulatory changes in the livestock industry: identification, traceability
  • Mandatory components for RFID-enabled dairy farms
    • RFID tags and boluses, herd management software, fixed RFID reader, digital network
    • Auxiliary components for RFID-enabled dairy farms
  • Portable readers, weight scales, automated feed-dropping controllers, milk meters, milking controller units, drafting gates, temperature monitoring, tracking, calf-feeding machines
  • Benefits of total farm management

Presenter: Professor Katina Michael, Faculty of Engineering and Information Sciences, University of Wollongong

Collaborator: Mr Adam Trevarthen, alumni of the University of Wollongong (for identification purposes only)

More here

Dealing with Dementia Gracefully

There are more than 413,106 Australians living with dementia. Australia's population is 24.13 million. Without a medical breakthrough, the number of people with dementia is expected to reach 1,100,890 by 2056. Currently around 244 people each day are joining the population with dementia. Dementia is the second leading cause of death of Australians contributing to 5.4% of all deaths in males and 10.6% of all deaths in females each year.


As we live longer due to medical breakthroughs as demonstrated by the average life expectancy (82.45 in Australia, compared to 83.84 in Japan and 78.74 in the USA) and are able to see more, our quality of life seems to be diminishing in other aspects. Futurists like Ray Kurzweil describe notions of the Singularity, and yet, families living with dementia face every day complexities today. Is there a solution to this growing problem? Transhumanists will say, yes!

In 2008, I had an article in the Illawarra Mercury that caught the attention of a gentle man, Kenneth Lea. Kenneth lived in Thirroul and we spent some time together discussing how location technologies might help carers with loved ones suffering from dementia. I visited Diggers in Corrimal with Kenneth to meet his beautiful wife. Kenneth had done everything to help his wife enjoy the comforts of home before the disease progressed and it was no longer safe for her to be there. I was heavily pregnant with my second child that year, but with Kenneth's handwritten letters I was moved to learn more about his story. With his patience, I was catapulted into what seemed a foreign world. I got to meet other carers also. They helped to formulate the opinions I have today with respect to how technology can aid sufferers and carers alike. There is also the wonderful work of Lyn Phillipson and her team at the Centre for Health Initiatives (CHI) at the University of Wollongong that I have always respected.

Some months ago I had the immense joy of meeting Suzi Jowsey Fetherstone. Her mother Patricia's story of Alzheimer's Disease (a form of dementia) was documented by AttitudeLive in 2014. I watched this episode last week for the first time. I was moved by many things. This is what I want to share with you when I see you at U3A. After watching this documentary aptly titled "Together Apart" you will understand the title of my presentation "Dealing with Dementia Gracefully". Perhaps, there is nothing graceful about dementia as a  'disease'. But how we honour, understand and respect our loved ones when they regress at their end of life stage, if they fall victim to dementia or Alzheimer's Disease can be graceful. Suzi Jowsey, and her father Victor, tell their intimate story. It is a celebration of Patricia's life, then and now. At my U3A presentation we will watch this documentary together and then have an open discussion about what we learnt from it.

Wearable and Implantables Panel at IEEE Life Sciences Conference 2017

IEEE Life Sciences Conference

Title of Panel: From Wearables to Implantables that Measure and Enhance Human Behaviour: What can we do already? And where are we headed?

Estimated Time: 1 hour

Structure: Each panellist will have 10 minutes to present their case. The moderator will then spent 20 minutes in discussion. Finally, the audience will be invited to ask questions for 10 minutes of each participant.

11.30am-12.30pm Thursday (14 Dec)

Moderator: Katina Michael

Biography: Katina Michael is a professor in the Faculty of Engineering and Information Sciences at the University of Wollongong. She is Editor in Chief of IEEE Technology and Society Magazine, and Senior Editor of IEEE Consumer Electronics Magazine. Katina has previously served as a representative of Consumers Federation of Australia between 2010 and 2016. She has been researching the socio-ethical implications of biomedical devices over the last 20 years.




Panelist 1: Ms Shanti Korporaal

 Ms Shanti Korporaal

Ms Shanti Korporaal

Shanti Korporaal is a Futurist, Serial Entrepreneur, Speaker, Facilitator, Whisky Chick and most of all, lives for Lightbulb moments. With her husband, Skeeve Stevens, she runs eight businesses with offices in two countries - Australia and Cambodia. In life and in business they make a great team, Skeeve is the visionary and ideas and Shanti is the practical tactical, implementer. She is co-founder and Director of Future Sumo, VR the World, Chip My Life, Niisch, eintellego Networks, eintellego Networks (Cambodia) and Elastic Venues (Cambodia). All of her companies are about empowering her clients to grow and flourish in their own businesses or department.

Panelist 2: Mr Meow Meow

 Mr Meow Meow

Mr Meow Meow

Meow is the founder of BioFoundry Inc Australia. He is a citizen scientist whose lab dabbles in wearable and implantable technology among other biohacking applications. His website is He has been featured in Bloomberg’s Hello World documentary in 2016. He was also the first person to implant and Opal card NFC device into his hand. He is a molecular biologist by qualifications and training.

Panelist 3: Rebecca Herold

 Ms Rebecca Herold

Ms Rebecca Herold

Rebecca has 25+ years of systems engineering, information security, privacy & compliance experience, is CEO of The Privacy Professor® consultancy she founded in 2004, and President of SIMBUS, LLC Information Security, Privacy, Technology & Compliance cloud services she founded in 2014. Rebecca engineered the SIMBUS architecture, including risk assessments, LMS, and breach calculator and management system, plus others.  Rebecca has authored 19 books, contributed to dozens of other books, and hundreds of articles. Rebecca led the NIST Smart Grid Privacy Subgroup for 7 years, was a co-founder/officer for IEEE P1912 Privacy and Security Architecture for Consumer Wireless Devices Working Group, and is on many advisory boards. Rebecca was Adjunct Professor for the Norwich University MSISA program for 9 years, has received numerous awards, and has provided keynotes on five continents. Rebecca appears regularly on the KCWI23 television show, and quoted in diverse publications.  Rebecca is based in Des Moines, Iowa, USA.

Conference Link:

Photos from the Panel

 Front: Katina Michael, Meow Meow, Shanti Korporaal. Background via Skype: Rebecca Herold

Front: Katina Michael, Meow Meow, Shanti Korporaal. Background via Skype: Rebecca Herold

Medical Device Commercialisation Training Program

Last week I had the pleasure of going to the medical device commercialisation training program (part 1) at Wollongong's Innovation Campus. It was a highly worthwhile day with lots of examples, a great deal of useful content, and application process information. As always I include the disclaimer at the top of this web page-- any errors in my note taking are my own. The notes are ill-formatted but I hope this does not detract from readability. I've tried to maintain some consistency throughout. The notes are my interpretation of what was said, notes from the board, and separate thoughts/reflections of my own on occasion.



Deep tech innovations


Redfern. 70 companies

Industry-agnostic, not just medical.

Life sciences, devices, diagnostics, robotics/hardware, enterprise software

500 patents in building

70 start ups

110M private and public funding


Incubator Process:




NSW Health (resmetal, next cochlear)


Ignition IP – base level skill (being informed)

Ignition Health – 12 week course (work in teams). Break down biases.

-          Customer discovery – finding the right business model

-          Team based

-          Experiential learning

-          Lots of customer interviews

-          Scientific method to the market

-          What are the assumptions making around

-          What are the pain points

Ignition CORE – Flagship. Run for 3 years. Intensive commercialisation course

-          Commercial aspects of building your medtech business

o   Intellectual property management

o   Market analyses and customer archetypes

o   Product development

o   Regulatory and reimbursement strategy

o   Financial modelling

o   Valuation

-          Ignition show case. 300 people. 950K of awards

50 graduates

11 companies

$20M in public/private funding


An Introduction to Intellectual Property

Gavin Recchia

Principal Patent Attorney

Davies Collision Cave (law firm)

-          Process, device, method

What is IP?

-          Trademarks etc

-          Innovation is only good as your ability to exploit it

-          How can you apply, an application, and a scenario that is used

-          Draw benefit to the exclusion of others

-          How is the public good best served by my work and its dissemination?

-          What is the public good?

o   Turning into clinical advance and turned into clinical setting

o   Not really to go to journal but what else?

o   IP protection and publication

§  Protect or perish ; publish or perish?

-          In the patent you are publishing in more detail than you can imagine.

o   Patent protect first, and then publish

-          Product of thought, creativity, and intellectual effort”

o   Industrial, scientific, literary, artistic fields

-          Intellectual property rights are those right available to protect knowledge

-          Intangible assets

o   More difficult to quantify and define but most important (as opposed to trucks)

§  Australia has invested in tangibles not intangibles OECD (share of GDP)

o   Not good on R&D and other intellectual property products

-          Seems to be a cultural things.

-          Patent filings: applications. Australia is flat. Zero growth.

-          AU medical device innovations

o   Health costs, population increases

§  Pressure to innovate in healthcare increases

o   Have skills and track record

o   Cochlear, REsMed (sleep medicine and non-invasive ventilation—sleep apnea), Compumedics (neurological), Optiscan, Impedimed (bio for lymphedema)

o   (1) Copyright, (2) trademarks, (3) industrial design, (4) patents

-          Copyright

o   Exists automatically. Protects literary and artistic

o   Dramatic works, musical works, Recordings and broadcast

o   Published editions

o   Protects the expression of something and not the idea itself

§  Demonstrate that they COPIED your work, not independent creation

§  In workplace it depends on your contract

o   Control over restricted acts (reproduction, sale, performance)

o   They are exclusive rights—right to stop someone else from reproducing

o   International in scope

o   Lifetime of the author +50-70 years after their death

o   Can be licensed like a key to a house

o   Protects expressions and not ideas

-          Branding

o   Trademarks

o   Logo

o   Registered names

o   Domain names

o   Copyright in and logos

o   Registered Trademark

§  One registered and the other asserted by common law

§  Stand out in the crowd

o   Trademarks:

§  Word, phrase, symbol, shape, color, scent, sound

·         Associates sign and image with a service

·         Coca-cola

§  Can be registrable

§  Threshold of distinctiveness

§  Lifetime – indefinite

§  Use or lose

·         Cadbury – colour purple- it work

·         BP tried to do it for green- did not work

·         Harley Davidson—sound of HD

·         Sound of lion in Metro Mayer (movie)

·         Apple symbol- woolworths, household goods, NO from apple

o   Apple was on green trucks of woollies and white in apple

§  Aldi is example of almost predatory

·         Against substantially identical or deceptively similar designs

·         Keep paying fees to that country

·         Different in each country (geographic)

·         Coca-cola—150 countries….

·         If not used for more than 3 years then it can be taken away from you

o   Demonstrate using it as a trademark

o   Sufficient reputation developed within


·         818621

·         Word: ResMed

·          Class 10

§  562396

·         Word: VPAP vPAP

·         Class: 10

·         Certain subset of goods and services

§  1158806

§  Samba

§  Class: 10

§  Different applications

o   Another trademark 796827 Samba, Bon Food Class:30 coffee

o   Samba x 2

o   Wind surfer, eski, Kleenex, hoover, windsurfer, post-it notes (3M)

§  Trademark rights on that word

§  SO familiar that they buy your product but not too familiar that they buy others also

o   Not Prima Facie Registrable

§  Kind, quality, quantity, intended purpose, value

§  Geographical origin, time of production, any characteristic of product

o   Advantages

§  Exclusive right to use trade mark and to obtain relief for infringement

§  Authorised use

§  Maintenance of trademark by renewal

§  Customs provisions

§  Deterrent effect of registration

§  Policing of trademarks register by Registrar of Trade Marks

§  Rights to assign/ record interest

o   Disadvantages

§  Procedure

§  Time and cost

§  Obligation to maintain and police registered trade mark

·         Non-use issues

·         Renewal requirements

§  Update changes

§  Pay fees to maintain each year

·         Apply -1-2K

o   Make your trademark stand out

§  Distinctive, memorable

·         Fanciful or coined terms, arbitrary marks

·         Avoid descriptive or generic terms

§  Gianturco-Rubin Stent, Taxus Stent, Taxus Liberte

o   Avoid generecising mark

o   TMs and Business names

§  Cannot register a business name unless y ou have done a trademark search. Because you can have a business name, a domain name, but trademark can belong to someone else.

-          Industrial Design

o   Protects visual appearance of an article

§  Does not protect functionality

o   Monopoly over appearance

§  As indicated by representations

§  Lasts for about 10 years

o   Shape of a device (appl trademark ipads, syringes etc)

o   Shape, pattern, configuration, ornamentation

o   Cars, tyres, tyre treads

o   Protects appearance but NOT functionality (so you need a patent also)

o   Applied to medical devices, electronics, vehicles

o   Prevents direct reproduction of design

o   Can be obtained quickly

o   Add to commercial value of a product

§  Attractive and appealing, marketability

o   Catheter, wheel chairs, movement devices, stretches, stents, mesh, walking frames

o   TWO DESIGNS: AU 321356 vs AU 319213 (very similar). Swivel with steering variation.

o   Simply protects DIRECT COPYING

o   One thing to say you can do it, another to say it is WORTHWHILE endeavour to get IPx

-          Trade Secrets

o   Need to control disclosure or use of information

§  Technical data, business information..

o   Must be kept confidential

o   Not reverse engineerable

o   Are not property

o   Can suffer from leakage

o   Duration- as long as you keep the secret

o   Coca-cola… 2-3 people who know… cannot go on same plane… confidential

o   17 years (original patent)

-          Patent Overview

o   Protect functionality of products, methods or processes

o   Idea must be:

§  New: novel

§  Inventive: not obvious

§  Not excluded

·         Exclusionability of patents

o   Provides exclusive right to prevent others exploiting the invention

§  Does not provide freedom to operate

o   Philosophy

§  Promote R&D and innovation in industry

§  Offering a reward to the inventor

§  For the right to publish details of the invention

§  So the public may eventually use it

§  And other may work around it

·         Lasted 600 years

o   Monopoly of 20 years – limited duration

o   Contract between inventor and state – quid pro quo

o   Territorial in scope

o   Requirements

§  Patentable subject matter

§  Novelty

§  Inventive step/ innovative step

§  Specification

§  Utility

o   Formal application/ examination process

o   Difficult: novelty and inventiveness… to prove… this is the prior art

o   Innovation Patents

§  8 year monopoly right

§  Protect innovations

§  Obtained quickly 4-6 years

·         But these were new but not really INVENTIVE

o   Problem is that it was highjacked by big players not SME

§  Commercially useful assets

§  Barrier to entry

§  Likely to cease to exist given gov report

§  Road barrier court case

·         Substantial contribution to innovation (flexible road barrier)

o   Durapost vs Delnorth

o   Road post of spring steel with barb!

o   More difficult to invalidate than standard patent as no inventive step enquiry.

o   Useful for small things in increment

§  Lucentis by Novartis

·         Ranibizumab treating AMD macular degeneration

·         Prefilled syringes containing products with dosage amounts

·         Not chemical, not syringe but TWO THINGS

·         8 AU innovation patents ($500M sales in 2015)

·         Versus Bayer product [became a strong tool]

o   Patent-eligible Subject matter

§  New machines, devices

§  New compositions

§  New use of known object, substances etc

§  Methods of doing things

§  Processes for making things

·         Improved processes for making known things

§  Combinations of known things

·         Synergy or unexpected interaction

§  Can use SAME device for a different application (method patent)

o   Australia: NRDC case (1950s)

§  Artificially created state of affairs

§  In a field of economic endeavour

§  * cannot patent genes which are same as sequence in nature

§  Needs to be $

§  Can’t patent nature

o   Europe

§  Methods of treatment by surgery or therapy, and diagnostics, practiced on a human or animal body excluded

o   US

§  Anything made by man under the sun (1980s)

§  A beer barrel on a head

§  US Patent 5,443,036 (cat and beams)

·         Laser beam on a wall get cat to exercise

§  Just because you can get a patent it doesn’t mean you should.

-          If not an enforceable invention DO NOT patent it.

-          Does it align with business plans.

o   Must align with commercial objectives

-          Not always:

o   Medical treatments

o   Diagnostics

o   Software

o   Ecommerce and business methods

o   Gene sequnces

-          Typucally

o   Machines, devices, hardware

o   Processes, techniques, methods

o   Compositions, materials

o   GMOs (Except animals?)

-          Kit, collocation, working directions etc

o   Generally a kit of parts none of which are novel, is not patentable

o   Very important in diagnostics field

-          Case Study: B Braun Melsungen AG

o   Family business since 1839

o   Safety IV catheters

o   Invention borne out of AIDS treatment

o   Prevention of needlestick injuries

o   Sales in excess of $500M

-          Case Study: Ultimate Medical (Aussie)

o   Laryngeal masks and other airways management

o   T-Bag

o   Single use oxygen enhancement device

o   2013 acquired by Teleflex

-          Case study: Nurofen

o   Boots developed Ibuprofen (1961)

o   Launched in 1969

o   Patent expired in 1980s

o   Exclusivity in improvements

o   Value in trademark maximised


Different Types of IP and IP Rights

Why is IP important?

-          No one is giving the $ to you after the fact

-          Proprietary knowledge of a business

-          Most important asset owned

-          Large industries are founded on IP

-          Gives competitive edge in marketplace

-          Software: copyright in code

-          Pharmaceutical: Patents on drugs and their uses

-          Nike: Swoosh (nike label) Just do it.

-          Expensive process. Prevents copying and freeloaders. Recoup product costs

o   Feasibility study and market research

o   Prototyping and product development

o   Marketing

o   Developing manufacturing/ distribution capabilities

-          Example: cost of bringing pharmaceutical to market is $800 million

o   Dimasi, Hansen and Grabowski (2003)

-          Valley of death – lack of funding

-          As development goes up, funding goes down

-          Government funding initially and then private sector funding kicks in

-          Market monopoly

o   License invention to have a revenue stream

o   Negotiation tool

§  Offering cross licensing

-          Defence against other people’s rights

-          Directors’ Obligations

o   IP assets represent a disproportionate amount of a company’s value

o   Need to manage and take steps to protect IP in your company

o   A director may be personally liable if they direct an organisation to commit an infringement of third party IP


How to talk about your secret sauce without giving it away

Value, usefulness, monotone, who are you speaking to? Technical low-down, know your audience

-          What is the unique inventive step that needs to be protected

-          Know the boundaries

-          Everything else can be shared

-          Know your audience- craft the story.

-          Their pain points, their problems.

-          Customer vs physician.

-          Don’t care about the technology—but it is the impact.

-          What value do you create?

-          Potential investors, partners, buyers

o   Cook Medical

o   Meet people to work with

-          What’s in it for you?

-          What’s in it for them?

-          Can they replicate what you do?

-          To sign an NDA or not?

-          Medtronic or Boston Scientific

-          A lot of investors will NOT sign NDAs. No time.

-          VC – institutional seasonal investors. No opportunity to steal ideas and go elsewhere but Medtronic might.

o   With a larger corporate have an NDA.

o   Very first meeting you would not sign an NDA. Getting to know you.

o   Due diligence process… NDA would be signed.

o   If patent not granted yet, be low key (20 year monopoly)

-          Have a logical story. Share the vision.

o   Problem: how many, where, how bad?

o   Solution

o   Market: size and opportunity, service delivery

o   Traction

o   Defensibility

o   Business model

o   Pricing

o   Timeline

o   The Ask

o   * What is the impact—that is what it comes down to.

-          Business Model Canvas


-          Users (hospital, physician?)

-          Choosers (hospital, physician?)

-          Payers (admin, patient?)

-          * That jobs do they need to get done. Could be social or emotional jobs. Admin. What are KPIs you have to meet? Patient satisfaction rating.

-          Customer jobs: A, B, C. There are gains and there are pains.

-          Customer interviews that are face to face.

o   Body language is a big indicator.

Value Propositions:

-          What is your offering?

-          What pains are relieved?

-          What gains do you create?

-          *Is your solution a Vitamin vs Pain Killer


Match Value propositions to customers

-          Clayton christenssen, milk shakes, time….what wearing… with who?

-          Staying in store? Innovators Dilemma

-          Half of milkshakes sold by 8.30am MCDONALDS

-          Nearly all had a long commute to work

-          Boring…stuck in traffic, peckish, limited by hands… (pain relievers)

o   Gains: quick, convenient, guilt-free MATCH (Gain creators)


PATENTS: What do I have to do?


-          Has this thing ever been done before?

-          Anywhere in the world before?

-          Prior art

-          Prior art must contain an “enabling disclosure”

-          Subject matter of patent application is compared against publications and prior use from anywhere in the world


-          The invention must involve creative thought or ingenuity

-          “If this exact thing hasn’t been done before (i.e. it is novel), what is the difference (i.e. step) from what was done before what is being done now? Is that step inventive?”

-          Is it obvious?

-          Non-obvious… but to whom?

o   Hypothetical person skilled in the art (PSA)

-          Thresholds differ in different jurisdictions


-          We look at common general knowledge

o   Would I directly be led to do this because I thought it was going to work


-          Reasonable expectation of success


-          Obvious to try


-          Invention must be fully described

-          Description must provide “best method” of performing the invention

-          Claims must not be too wide, considering what is disclosed in the specification

-          US: must enable the working of the invention, and show the applicant was “in possession” of it

Patent Claim

-          Describe the invention in ONE sentence

-          Think about the advance mad over the state of the art

-          Think about different possible embodiments to avoid being too narrow


A light emitting device compromising: an electricity conductive medium adapted to emit light when an electric current is passed therethrough


An electrical conductor adapted to emit light


EXERCISE: Fire, Candle, Gas Cylinder-à light bulb

Like a table cloth—do you trim to table… better to start bigger than small.


Don’t have to say it up front… JUS TNEW invention is!!

Google 23 and me…



Provisional (12 months)

-          Never published

-          Title, owner [secret document]

-          Can roll that over as often as you like

Complete (international application) - WIPO

-          Publication begins 6 months after… specification will be published

-          WIPO

-          18 months (preliminary search and opinon)

-          One person will assess but not 100% binding (knockouts at that point)

Then national phases

-          US, EP, AU, CA, JP, CN (national examination and grant)

-          Country level examined application and granted


PCT application

-          152 countries are covered

-          Gives you 18 month additional to choose countries in which to pursue patents

-          Official international search

-          Provisional patent is recognised internationally


-          Grace period for filing a patent application after public disclosure

-          Protect for self-disclosure

-          12 months to file complete patent

Patent application might be in process but DO NOT put a DESIGN application in because it will be disclosed within 6 months. While Patent applications is 12-18 months.


You can only claim for when it is granted.

Picket fences… broad

Modify… 20 + 20 years + 20 years… keep developing


Key points:

-          Should be filed before disclosure

-          Grace periods

-          Provisional 12 months… The clock is ticking… Complete 12 months (max)

-          Information/data collecting exercise is ongoing and subject to time pressures

-          Must include all subject matter

-          Must file in each country of interest

How much data?

-          In vitro vs in vivo data

-          Breadth of exemplification vs spectrum

-          Don’t have to test every single embodiment

-          In vivo data is not needed IF a sound prediction can be made

-          IN vivo data may be needed as support for examination

Depends on tech

Depends on stage of the patent process

Extrapolation is admissible


Useful starting point:

-          Would you be convinced of the claims made in light of the supporting data?

Cannibis. Medical cannabis.

Against the law

Reproducing a human.

Hold the patent from distribution. Socio-ethical legal issues.

Not against the law. Moral obligations for human harm.


Timing and Cost Management

-          Defer costs where possible

o   Combine applications where possible

-          Avoid unnecessary costs

o   Extension fees

-          Seek external funding

o   Government grants

o   Sensible country selection

§  Follow the money

·         Primary markets

·         Manufacturing

§  Consider patentability exclusions

o   Rationalise portfolio

Regular evaluation

-          Patent priority profiling

-          Deadline for internationalisation: 12 months after t

-          Deadlne for nationalisation: 30/31 months from beginning


Select what to patent

-          Business/commercial value

o   What is the lijely value of the technology

o   Will exclusivity provide a competitive advangtage

o   Does the technology align with commercial objectives

-          Legal strength

o   What is the inventive step over the prior art

-          The higher the regulatory bar to product approval to more the patent strategy is important

o   Timing

o   Countries

o   Disclosure over time

A balancing act:

1.       Cut your cloth and go broad

Broad: scope of potential monopoly, prior art against others, flexibility to change course, ability to bury lead idea

Narrow: simplar examination, greater certainty of ouotcome, reduced expeince, improved prospect of availability

Picket fences strategy:

CORE component (then expand)-- NUROFEN

BAYER: compound (termite protection). Expire patent and expand patent list.


-          Aggressive / licensed strategy

o   Patent everything

-          Blocking strategy

-          Defensive strategy

-          Fencing strategy

-          Land mines

-          Scorched earth

o   Put everything in and others cannot use it either


Discovery or invention

-          “Every scientific discovery if made technologically applicable, becomes an invention.

-          Continuous assessment of findings and developments

o   Checkpoints, e.g. group/lab meetings conference, manuscript

-          Do not try to evaluate inventiveness

-          Searching patent and non-patent literature

-          Invention disclosure forms (use it)

-          Consultation with patent attorney


What is an invention?

2.       Conception.

3.       Reduction to Practice

IN science it can be done in reverse… if engineerings 1-2 steps… or same time!


-          Formation in the mind

-          Definite and permanent idea

Reduction to Practice

-          Constructing invention

-          Testing

-          Testing of embodiments

-          The invention need not be perfect

-          Not all embodiments need to be tested

Constructive reduction to practice

-          Full clear concise and exact terms, to enable a person in the art relevant to it to make and use it

Who is entitled?

-          The inventor

-          Someone entitled through the inventor

-          Entitlement vs ownership

Inventorship matters:

-          Revoking a patent is almost impossible

-          Critical to identify inventors and ensure correct entitlement

Medical Device

-          Include software

-          Operations of a health system

-          A tool, diagnostic, device

-          Process

-          Public funding- ignition core… medical devices fund (state government fund) 6-8m$

WILL HIRD – Chemical Engineering

-          What constitutes inventorship?

-          “Conception is the touchstone to determining inventorship”

-          Without contribution the invention would not have been made


-          Material effect on invention

-          Part of a collaboration

-          Practical implementation of a mere idea

-          “But for”

-          Conception of the solution

Not indicators:

-          Using teaching of prior art

-          Normal skill in the art

Single inventor:

-          Fewer problems

-          Rarely applicable in modern high tech

Joint inventor:

-          Where two or more individuals collaborate on an invention

-          Each individual makes some but not all of the contribution

-          Owned in equal amounts

-          Subagreement about revenue on how to distribute among inventors entitled

Case Study:

-          HARRIS vs CSIRO

-          Collaborative project between D and H

-          H was considered to be an inventor.. materially affected the ultimate invention was

o   Entitlement

o   H challenged D…

Patent Owners:

-          Not normally the inventors

-          Chain of the title, normally from inventors to other entitites via:

o   Contract of employment

o   Assignment

o   Other legal contract or agreement

o   Check obligations

-          An inventor is always an inventor but owners come and go

-          Inventors are rewarded

Organisation IP Policy

-          Created by staff

Research (Organisation IP Policy)

-          Ensure ownership does not conflict with assessment of student


-          No true inventor was names

-          One or more additional inventors should have been named

-          No clear chain of title

-          CRC

-          Invention not conceived in course of employment


Case: Ethicon Inc v. U.S> Surgical Corp

-          Dr Yoon developed trocar equipped with safety device

-          Ethicon sued US Surgical

-          Mr Choi helped but not informed

-          US Surgical found out about Choi

-          Obtained a retroactive license

-          Corrected inventorship of patent

-          The US Surgical ended up on the patent

Perform inventorship determinations

-          Interview contributors

-          Collect collaborating evidence

-          Prepare time line/fact sheet

-          Obtain approval of fact sheet from contributors

Assess inventorship



-          Disclosing results of research to a company

-          NDA from the University

-          NDA for exchange of materials (MTA) materials transfer agreement

-          Complete invention disclosure form/ pre-disclosure form

-          Documented notebooks

Public disclosure

-          Kills off validity of payments

-          Europe, China doesn’t use a grace period (70%). Australia does.

-          No public disclosure

-          Discrete about details of invention

-          Not publically disclosed prior to patent application

What happens when YouTube clips are made available for Kickstarter funding… courts put them up.

Cohen-Boyer patent (US 4237224)- public disclosure…

Commercialisation people wanting to hold back but academics want to impact

Computer related innovation

-          Patent protection

-          - function of a program, function of hardware

-          Protection of function and routine itself


                No need for registration

                Can protect source code, executable code

Circuit Layout


Example: Resmed AU2016204561: “System and method for determining sleep stage”

Example: AU2013319705

-          Contradiction between thought and feeling

-          Mental health care support device, system, method, program

o   “automatic thought and feeling inpuot unit

-          What is patentable

You can keep something away from public view (blackbox it)

-          E.g. trade secret for google rank page (patented, then IPO)

-          But today Google might not release the additional smarts


How can you stop someone else from doing something

Patent 1: patented compound

Patent 2: a new method of using the company (application of hair for minoxidil)

** Minoxidil (new use of a known substance)

n  Unexpected, needs to be inventive…

In the tech space: e.g. RFID and the use; Bluetooth


Right to exclude others from practicing invention

-          Making

-          Using

-          Selling

-          Offering to sell

-          Import

Relates to the patented invention

-          Looks to claims

-          Right to license or assign

-          Infringement action can only be brought after patent grant



Research use exemption

-          Experimentation

-          Experimental purposes

Regulatory exemption

Prior user rights

-          Secret use before priority date


If in the eye of public interest you can go forward and use the technology.


Patent Landscape

-          Patentability and freedom to operate are different things!

-          Different to protecting your intellectual property

-          ** Freedom to operate sometimes means you need to get a license to sell your process/product

Freedom to operate

-          Has nothing to do with whether or not you have a patent

-          Nothing to with the strength of your patent position

-          Relates to ability to commercialise your technology

o   Will you infringe some else’s patent right?

-          Determining FTO is not trivial


-          What markets are you interested in

-          Markets of partners/licensees?

-          What level of comfort do you want or need?

-          What level of comfort do inventors/licensees want or need?

-          What is your technology now?

-          What developments of your tech are your planning?


-          Specific patent search strategy

-          Patent claim analysis

-          - jurisdiction by jurisdiction analysis

1983 – Ben Lexin—wind keel (closed with blankets)


FTO—look if a patent has expired.


Dealing with someone else’s patent

-          Determine importance

-          Determine freedom to operate

-          Can I work around?

o   Identify elements of the claim that you can change or avoid

-          Invalidate the patent

o   Find prior art that invalidates problematic claims

§  “novelty KNOCK-OUT reference”

o   Ideally a single document or disclosure

-          License the patent


Patent searching

-          Should form part of any literature survey

-          Should form part of your R&D planning

-          Patent applications are published at about 18 months from filing

-          Searching is never 100% determinative- depends on searcher’s skills and expertise

o   Languages

-          Not one size fits all


Who are our competitors? Patent landscape

Where are the white spaces in R&D? Name

What is company X or inventor Y patenting? Patent family

IN which countries has patent protection been obtained or being pursued?

Is the claimed invention new?

Could we potentially be sued for patent infringement?

* atlasian



IP Australia

Google Patents




-          Purposeful. NGOs. Competitors.

-          Needs to be reproducible.

-          Identify the technical field.

-          Enable the invention to be repeated

Need to disclose everything or just keep it as a trade secret.

Scope of protection, clearly mark out territory

Japan, China, South Korea

Machine translation via Google

China’s move dramatic because gov funded innovation cycles


Patent Specification

-          Tech Field

-          Background

-          Summary of the Invention

-          Brief Description of Drawings

-          Detailed Description

-          Examples

-          Claims

-          Drawings

Patent claims are numbered

-          Preamble + characterising features

o   Define the invention

-          Claim set begins broad and narrows

-          Different claim types

Case: B Braun vs Multigate

                Retractable needle

-          Two different needle retraction devices. So broad claim meant that they could capture same thing differently… same function and different method.

Apple Samsung (IP barrister lawyers)


Exercise: drink carrying device

-          Prior art search: drink carrier

-          The drink carrier scenario

-          Drink carrier could fold into a small convenient size

-          Australian Patent: 2005289364

-          Breadth goes a lot further than normal requirement

-          Patent and design protection



-          Not about the product but descriptive of it sort of


Part 4

Everything that can be invented has been invented.

-          Cost

-          IP portfolio – what is it doing for you?

IP Services

-          IP creation and identification

o   Identify IP and its full potential

o   IP audits

o   IP mining

o   Branding development

-          Securing IP rights

o   Drafting and prosecuting patent applications

-          IP Agreements

o   CDAs/NDAs, licensee, assignments, MTAs, CRAs

-          IP enforcement


-          IP due diligence

-          IP portfolio enhancement for exit

-          Improved IP operational efficiency and effectiveness


Patent attorneys:

-          Draft a patent

-          Technical qualification (science, engineering, technical competence)

-          Drafting and prosecuting apps

-          searching

-          Advice / analysis

-          IP law specialists

-          70K in 3 countries (Europe, Asia, US); 7 apps 2-3K bills each; TOO MUCH $


Old School

-          Do research

-          Review Output (maybe)

-          Capture IP (if still can)

-          And then work out what we will do


Aligning R&D and IP

-          Tech and market are well understood

-          Business plan is in place

-          Commercial strategy is agreed

-          IP landscape is identified and analysed

-          Required IP portfolio is defined

-          R&D planned to create the IP portfolio required to achieve the strategy

IP Landscape

-          Raise awareness

-          Quick to file, quick to abandon

-          Proper management of non-patent IP

-          Patents splits by application to facilitate licensing

-          Strategic publication where appropriate

Conception and Technical Design

Anatomy of a patent portfolio

60% of patents collapse over time because they cannot afford the maintenance

-          High core value


Good idea?

-          Don’t tell anyone

-          Consider brief literature

-          Consider obligations

o   Employer, collaborator, sponsor

-          Report in invention disclosure


Tools and processes:

-          NDAs

-          Notebooks and journals

-          Invention disclosure

-          Right creation



-          Don’t talk to people’s lawyers, you should talk to people who are interested in the actual technology

-          Maintain detailed records

-          Date, diagonal line through page if blank

-          Ink only

-          Pre-disclosure forms

The Dismal State of Persuasive Tech

"Persuasive Technology (PT) is a vibrant interdisciplinary research field, focusing on the design, development and evaluation of interactive technologies aimed at changing users' attitudes or behaviors through persuasion and social influence, but not through coercion or deception." Source:

Standford University described persuasive technology as captology- literally the ability to persuade using digital technology. We can ponder about the many varied applications of persuasive technology when we think about exercise and rehabilitation. Here we have a mechanism by which to persuade and motivate the end user towards positive behaviour toward wellness. Yet, persuasive technology, has been embedded into algorithms, since the inception of Pong. Sadly, whether knowingly or unknowingly, programmers have created stickiness drivers within video games to ensure not only repeat visits, but longer periods of time in front of the console, with the hope of getting the end user to conduct in-game purchases. This is indeed persuasive tech turned ugly. To a degree, it is propelling an end-user toward addictive behaviour. Big data can now determine, which types of people are more liable to be persuaded by certain rewards as opposed to others, and these are instituted particularly in massively multiplayer online games (MMOG).

We see thus, that there is a fine line between the positive and negative applications of persuasive technology. It does not help, that there are now so many different sensors, embedded in so many different devices, ensuring ubiquitous connectivity. For the person, for whom digital technology is a means of recovery, ubiquity is powerful and beneficial. But for the person who is hyper-connected ubiquitous technology may well mean a life destined without an ability to disconnect. For the greater part, we are relying on technology to tell us what to do, and in essence we are losing our intuition to make judgments and decisions.

When used correctly, persuasive technology can empower and build intuition. But one need only observe wearers of Fitbits, to quickly ascertain that these digital technologies somehow manage to dumb the senses, despite they are packed with sensors. It is a paradox. The more quantitative data we have streaming from so many different on-board sensors, the less our ability to make sense of it in every day contexts. We rely on dumb apps, to give us smart advice. Indicative however of this techno generational crisis, is the poor logic behind apps built for mobile devices, being embraced for use in large workforces, like university campuses across the world.

One such example was a recent well-being, pedometer-based tracker, the Virgin Pulse Global Challenge that was meant to encourage staff of the University of Wollongong to get moving. I had the option to enter in the number of steps I had completed manually, or to sync an android app, using Samsung health. For one reason or another, 100 days came and went, and neither did I enter the data manually, nor had I synced my phone. Of course, constant reminders telling me I should get moving and that I should enter my steps manually, which rather than encouraging me made me feel somewhat negative, despite that I was moving around. At the conclusion, of the observation period, instead of receiving a qualitative message commensurate to what the app believed I had achieved during this time, I was greeted by an auto email, that noted: "Congratulations you have done 0 steps" and "You have 99 missed step entries" and "watch your celebration video". Needless to say, I found this all a little patronising.

On the flipside, my concern, for persuasive tech that actually works, is that it is likely to know an end users behaviour even more precisely than the end user. The privacy of this data that has been collected for one purpose is paramount. In the future hackers will not only be after logins and passwords, credit card numbers and PINS, but behavioural biometric data which dictates someone's levels of empathy, neuroticism, propensity to purchase/impulsivity, anger levels, sociability, and much much more. How do companies build trust, around the collection of biometric data and how do users learn to trust systems and health providers with the very information that may enhance their life.


The Internet of Us: RADCOMM2017

I will be one of the keynote speakers of this event. I appreciate the invitation from RADCOMMS17 committee and extend thanks to the ACMA whom have been a target audience of our previous research.

Title: The Internet of Us

Abstract: Microchipping humans was once the stuff of science fiction but today we seem to be more than just dabbling in our dreams. For some fusing technology with the flesh will herald in an unforeseen utopia, and yet for others embedded sensors ‘under the skin’ is a clear marker of a dystopic future. What are the social implications of opting in or opting out to such a cyborgian vision? What are the unintended consequences of becoming an electrophorus? And what are the opportunity costs of not doing so? This presentation will describe where humans fit into The Internet of Things equation, and how we might be propelling ourselves toward an Internet of Us before too long. Welcome to uberveillance, where you too, might well be considered a node on a 5G network. It’s time to talk about the sociotechnical implications of humancentric embedded non-medical telecommunications devices that can be injected or even swallowed.

Biography: Katina Michael is a Professor in the Faculty of Engineering and Information Sciences at the University of Wollongong. She has a PhD in automatic identification innovation, a Masters in Transnational Crime Prevention and a Bachelors of Information Technology. She started out her career as a Graduate Engineer for Nortel Networks in 1996 and stayed with the company for six years working in pre-sales engineering throughout Asia and North America. In academia, Katina has authored seven books, guest edited 12 special journal issues, and written over a hundred peer reviewed papers. In 2008, Katina was successful in attaining a significant Australian Research Council grant on the topic of Location Based Services and Telecommunications Policy in Australia and has been researching the social implications of emerging technologies for twenty years. Katina is Editor in Chief of IEEE Technology and Society Magazine and a Senior Editor of IEEE Consumer Electronics Magazine.


Full program available here

Photos from the Event

 Pyrmont, Sydney

Pyrmont, Sydney

 Honourable Minister Mitch Fifield, Minister for Communications and Minister for the Arts giving the opening address at RADCOMMS17. In foreground, the new Chairwoman of the Australian Communications Media Authority (ACMA), Derida O'Loughlin, the first female chairwoman of the ACMA.

Honourable Minister Mitch Fifield, Minister for Communications and Minister for the Arts giving the opening address at RADCOMMS17. In foreground, the new Chairwoman of the Australian Communications Media Authority (ACMA), Derida O'Loughlin, the first female chairwoman of the ACMA.

 Chairman ACCC, Mr Rod Sims giving keynote address at conclusion of Day 1. "The economic value of the spectrum is the value it will give to the economy, not the one hit/one-off budget boost which is short-term." Here Rod is speaking of the 5G spectrum.

Chairman ACCC, Mr Rod Sims giving keynote address at conclusion of Day 1. "The economic value of the spectrum is the value it will give to the economy, not the one hit/one-off budget boost which is short-term." Here Rod is speaking of the 5G spectrum.

Representative Feedback

On this occasion I was particularly overwhelmed with the positive feedback I received. I have reflected on this greatly over the last 48 hours. What was it about this audience that had representatives from government, industry, and academics? No doubt, the fact that I was so engrained in the telecoms sector between 1996-2002 had something to do with it. The people I was speaking to "were there" when things happened, and most are "here" today. I used the right language that came naturally to me to present. I used examples that we had all witnessed over the last 20 years. I had been heavily involved in the 3G spectrum allocation auction process because I was building models that I shared with telecoms operators so they could figure out what their proposed CAPEX might be. And here we were 17 years later discussing the roll out of 5G spectrum with a different paradigm in place of "auctions" and lots to go to the highest bidder...

In any case, there is so much I can say! Perchance meeting with old friends in the industry, including a dear friend I worked closely with on Telstra bids, Noelle Jones! Thank you to Tony Huang from Optus who helped to untangle some of the visions of the sector at large, and to Carsten Clemens who I think is a Nokia guru who I had the grace to break bread with at the ACCAN speaker's dinner. But much of this positivity stemmed from the people at the helm- Nerida O'Loughlin (chairwoman of ACMA), Mark Lomey, James Cameron, and a long list of people... including the tireless professional staff of Emma Rossi, Emilia Nedic, Lou Tapselle, Erin and so many others who were so supportive.

Here is what some emails had to say:

Hi Katina: I enjoyed your Internet of Us presentation yesterday. Your dot analogy and safety implications arising from interference and crosstalk in data transmission, especially for a range of applications and industries, should give everyone a lot to think about.

(Male) 3 Nov 2017

Hey Katina, It was great to meet you and see your presentation.
(Male) 3 Nov 2017

Thank you so much Katina. I have downloaded your great presentation. Amazing !

(Male) 3 Nov 2017
Your speech was great, lots of people saying how good it was still on day 2.
(Female) 3 Nov 2017
We met at the ACMA Radcomms Conference in Sydney...  As you know I was impressed (blown away!) by your presentation and very grateful that I only had to speak about something as simple.
(Female) 14 Nov 2017

Robots for Aged Care: Socio-ethical Issues

Abstract: This presentation will consider several use cases for robots in aged care. The audience will participate in raising socio-ethical issues of concern. These may be positions for robots to be used in aged care, or against robot use in aged care. For example, can robots help the elderly get out of bed, and get dressed? Might they make good companions to stave off loneliness or depression? Or might robots motivate the aged toward reaching news levels of fitness, instructing them in daily light aerobic activity? This presentation will discuss what we imagine robots to look like, whether or not robots are welcome by the ageing population, and what some of the risks might be if robots are considered a replacement for skilled people.

Biography: Professor Katina Michael is in the Faculty of Engineering and Information Sciences at the University of Wollongong, Australia. She is presently the IEEE Technology and Society Magazine Editor in Chief, and the Senior Editor of IEEE Consumer Electronics Magazine. She researches the socio-ethical implications of emerging technologies. She has several special issues calling for papers presently on themes related to ethical robots, machine ethics, and ethically-designed robots.



About U3A

U3A (the University of the Third Age) Started in the universities of France in the 1970's. It has now spread throughout many countries around the world. It has become a community centred organisation, where people in their “third age” (active or semi-retirement, after childhood and employment) from all walks of life, get together to teach and learn from each other, in a friendly social atmosphere.

Research has shown that as we get older, it is important to maintain our physical and mental health, and that mental stimulation and social interaction contribute to positive ageing and wellbeing.

U3A Northern Illawarra is located in Thirroul, in the northern suburbs of Wollongong. It offers a range of activities throughout the weeks of school terms.

Our talks are held on a Wednesdays with the first speaker commencing at 9.30 am. There is a break for morning tea at 10.30 am with the 2nd speaker commencing at 11.00 am. There are a number of special interest groups held throughout the week at other times and days.

Venue: Excelsior Hall, Thirroul Library & Community Centre, 352 Lawrence Hargrave Drive, Thirroul.

Date:  Wednesday- 18/10/17 – Robots of aged care services: Socio Ethical issues.

Time:   9.30 am for 45 minutes (includes presentation and questions).


Personal Communications (October 21, 2017)

"Big Thankyou Katina from all at U3a Thirroul for your very enlightening presentation on Robots in Aged care.

I had a number of people approach me after your talk to let me know how much they enjoyed it and just like Oliver in the Charles Dickens book people are asking for more!

Hoping you might be available to return to us in 2018 to enlighten us some more..."

Banking Innovation: Self-authentication – is it possible and plausible?


Self authentication – is it possible or plausible?

— Identification is changing rapidly today with the use of biometrics to facial recognition and other invasive technologies. We will explore if self-authentication is not only possible today but is it secure and safe?

Professor Katina Michael, School of Computing and Information Technology, University of Wollongong

Here, I will explore the whole idea of "self-authentication" which includes Biometrics, Facial Recognition, Microchip Implants and other sensory technology that banks are using and exploring. The session will explore the possibilities, and whether or not these possibilities are safe, secure and also ethical. Are they violating our privacy in ways we could never understand, inclusive of both intended and unintended consequences. Bitcoin and blockchain will come into the discussion.

Biography: Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong, Australia. She has been studying the technological trajectory of consumer-facing banking technologies since 1996. She holds a BIT, Masters of Transnational Crime Prevention and PhD in automatic identification innovation. Katina is the IEEE Technology and Society Magazine editor in chief and senior editor of IEEE Consumer Electronics Magazine. She has written numerous books, among them a co-authored reference volume titled: "Innovative Automatic Identification and Location-Based Services: From Bar Codes to Chip Implants".

11th October, 2017

Radisson Blu Hotel, Sponsored by Ovum

Keynote Address: 12.45-1.15 pm

self-authentication - veronique.jpeg

Participant Comments (LinkedIn, dated 11 October 2017):

Sri AnnaswamyKatina Michael - brilliant session on the dangers of potential reliance on biometrics, image recognition and behavioral analytics

Glenn Stafford: As a wise group head of compliance once told me " if my password is compromised I can change it! If my thumbprint is compromised what do I do, plastic surgery?"

Here Come the Startups IGCC2017 Summit

All of this technology, that is emerging in the energy sector, is empowering the consumer to make decisions based on various values– this could be economic for a particular household, a way of life that is particularly green, or a multiplicity of thresholds more to do with equity and social e-inclusion towards collective awareness. If I have and my neighbour does not I can share my slice of the pie, if I so choose.

While all of this sounds particularly cool and snazzy, the connected home, automation and voice activated environments, smart metering, and redistribution, deep down we need to think about the steps we are taking forward and why and how this data will be used for and against us. On the one hand, people who can afford it are bursting to technify further their lives- they cannot get enough. I spent hours yesterday listening to people who I would consider DIYers, video blogging their Internet of things home. The story goes something like this: my Google nest’s connected to my Google home, my Google home’s connected to my Philips Hue, my Philips hue's connected to my Amazon echo, Dem Internet of Things, of Things, Of Things.

It seems ladies and gentlemen, some of us cannot get enough. I do get the massive revolution that will occur and IS occurring, making homes more energy efficient when consumers can make decisions about their energy use based on their own data in the form of a dashboard. But the truth of the matter is while we are going to some very smart solutions, LED-based lighting which uses so much less power than our conventional lightbulbs, you need to think about how many of these sensors – lighting, audio, image, temperature, among many others, will proliferate into everyday disposable objects. What will happen to these products? They find themselves in another e-waste land somewhere in Asia or South America or Africa? I personally do not see the point to having 60 million colours being able to transform with mood, ambience, music tone, and context. But we seem to be distracted by what I call the illusion of choice. The V blogs I was referring to, demonstrate the time wasted, and energy wasted both power and human energy, and figuring out combinations of things. It seems we are being distracted by the possibilities and not by the end goal.

To say this in another way I’ve been pondering how we are so preoccupied with the data and making sure we monitor human activities to determine context that we are missing the point. Energy efficiency has been proven not so much to come from changes in human behaviour which are very difficult to enact because of limited rewards and the novelty effect, but from better engineering design in white goods and other tools, especially in industry, that bring down energy usage on a larger scale. We need to think about this when we do place our faith in industrial robotics that can indeed run for 24×7×365 days a year. But what about the economic cost and the cost of maintenance? Are we simply shifting human labour operational costs, to the completely automated factory?

Perhaps what I am alluding here to is the potential to fall into the crisis, and Cambridge University has a research group dedicated to catastrophic risk – to fall into the crisis that we are actually trying to get a grasp of through various means. So I disburse sensors everywhere in a bid to get feedback and to have a pulse on what is going on right down to the grassroots level, for instance I even chip trees and fauna, but in so attempting to quantify absolutely everything before us we are forgetting to qualify what is going on. Put in other terms here are wrestling with climate change issues, when most of us see climate change happening every single day of our life. If we’re not careful, we will one day come out with that beautiful spreadsheet, those nice curves, about specific details on climate change and how they are affecting our planet but by that time it may well be too late because we are in that catastrophic period and things start to become a little more difficult – and what I am alluding to here are things that have been well studied by scholars in the field, including population change, fisheries and access to grains, clean drinking water and so much more.

Ladies and gentlemen we cannot eat technology but we can eat seeds as they grow and become something we can consume. We cannot drink silicon, but we can drink clean water. For the time being a great number of our global population is dying very young because they do not have access to pure water. I reflect back to studying this phenomena in high school but while wage rates have improved in developing nations, I can say we have only made minimal improvements when we describe things like access to water. So to be guiding you today as a technologist, down a path of investing in technology alone, well, that would be very shortsighted of me. I would invest in very basic needs for human survival, albeit in the seed industry and in clean water or at least in wastewater recycling methods and even somehow extracting phosphorus from waste. These are just a couple of examples I describe. And if you do not believe me as a layperson in the field of finance, then perhaps you could listen to some of the directions advised by technologists like Bill Gates. This does not mean we abandon technology, obviously not, but we need to find a balance.

One thing is for certain, having lived through and worked through one of the most rapid periods of change, and I might add change is ever more rapid, we also need to do something about this notion we call planned obsolescence. It is great to have new ideas, it is great to have kickstart a funding, it is great to be the next Google, but with these discoveries comes to social responsibility. The mantra do no evil or do no harm is no longer one that is openly disclosed by organisations, because they cannot promise in any event and with any certainty that their production will do no evil and will do no harm. Our environment is bleeding, whether through human made disaster knowing or a knowing or through acts of God, or calculated greed-- we need to personally enact change in our own lives but also ensure that we are traversing down the path of renewal and sustainability. What I don’t want to see is this topic future where smart metering means that energy providers can act to manipulate consumers in even more pervasive manner, where variable pricing means no one is better off anyway, and tariffs are set in a way with service providers can only win win. This is again propelling a generation, an all-you-can-eat generation, and one that just can’t see the signs had.


“When you see a cloud rising in the west, immediately you say, ‘It’s going to rain,’ and it does. 55 And when the south wind blows, you say, ‘It’s going to be hot,’ and it is. 56 Hypocrites! You know how to interpret the appearance of the earth and the sky. How is it that you don’t know how to interpret this present time? (Luke 12:54-56)


I do like DARPA’s Near Zero Power RF and Sensor Operations (N-ZERO) program that has been working to overcome the power limitations of persistent sensing by developing wireless, event-driven sensing capabilities that would allow physical, electromagnetic and other sensors to remain dormant—effectively asleep yet aware—until an event of interest awakens them. To achieve these goals, the program intends to develop underlying technologies to continuously and passively monitor the environment and activate an electronic circuit only upon detection of a specific signature, such as the presence of a particular vehicle type or radio communications protocol. N-ZERO seeks to exploit the energy in signal signatures to detect and recognize attention-worthy events while rejecting noise and interference. Source

But we must be cognizant that such N-ZERO initiatives are also potential intrusions into human behaviours, that until now have been private. Ladies in gentleman it is the first time in human history that we are inviting third parties into our homes to monitor what we do, and to listen to our home conversations. Trust has never been more important in governments, in service providers, and even in ourselves to do the right thing. Deep down for me personally this becomes a human rights issue. How can we go forward knowing what we must do is essential for our environment and the longer term survival of our planet with the risks that we face individually and collectively? I would encourage investment in green computing and clean computing. And this is not just at the lightbulb level but all the way back to the core and edge of the network architecture and evil even the ripple effect requirements of data storage in containers, racks and buildings. Perhaps a topic we can discuss throughout the day, thank you.

Signature logo.png

IGCC are holding their biennial Climate Change Investment and Finance Summit, taking place on 9th -10th October 2017 in Melbourne.

Session: “Here come the startups", 9.10am - 10.00am on Day 2 of the Summit, 10th October 2017 - focussed around Start-ups and technology.

The Start-up session will be moderated by Alan Kohler.  Others in the session: Philip Livingston, Redback Technologies and Jessica Ellerm, Zuper. 

Each participant will give a 5 min short introductory presentation with Redback and Zuper, who they are and what their start-up aims to achieve in terms of assisting solve the current climate and energy puzzle. 

Over 10 minutes I will discuss:

- Using technology to tackle social and environmental issues

- The governance and ethics of technology (potential unintended consequences of trying to solve the climate and sustainability crisis with technology)

- hyper-consumerism of personal technologies vs the need for responsible supply chain management and stewardship


- the potential disruptive nature of technology start-ups vs the things we need to hold on to.

The panel discussion will be moderated by well-known finance journalist Alan Kohler of ABC and the Eureka Report.

Secondary Links:

Photographs from the Event: