Conceptual Model of User Acceptance of Location-Based Emergency Services

Towards a Conceptual Model of User Acceptance of Location-Based Emergency Services

Abstract

This paper investigates the introduction of location-based services by government as part of an all-hazards approach to modern emergency management solutions. Its main contribution is in exploring the determinants of an individual’s acceptance or rejection of location services. The authors put forward a conceptual model to better predict why an individual would accept or reject such services, especially with respect to emergencies. While it may be posited by government agencies that individuals would unanimously wish to accept life-saving and life-sustaining location services for their well-being, this view remains untested. The theorised determinants include: visibility of the service solution, perceived service quality features, risks as perceived by using the service, trust in the service and service provider, and perceived privacy concerns. The main concern here is to predict human behaviour, i.e. acceptance or rejection. Given that location-based services are fundamentally a set of electronic services, this paper employs the Technology Acceptance Model (TAM) as a special adaptation of the Theory of Reasoned Action (TRA) to serve as the theoretical foundation of its conceptualisation. A series of propositions are drawn upon the mutual relationships between the determinants and a conceptual model is constructed using the determinants and guided by the propositions. It is argued the conceptual model presented would yield to the field of location-based services research a justifiable theoretical approach competent for exploitation in further empirical research in a variety of contexts (e.g. national security).

1. Introduction

Emergency management (EM) activities have long been practiced in civil society. Such activities evolved from simple precautions and scattered procedures into more sophisticated management processes that include preparedness, protection, response, mitigation and recovery strategies (Canton, 2007). In the twentieth century, governments have been utilising technologies such as sirens, speakers, radio, television and internet to communicate and disseminate time-critical information to citizens about impending dangers, during and after hazards. Over the past decade, location based services (LBS) have been implemented, or considered for implementation, by several countries to geographically deliver warnings, notifications and possibly life-saving information to people (Krishnamurthy, 2002; Weiss et al., 2006; Aloudat et al., 2007; Jagtman, 2010).

LBS take into account the pinpoint geographic position of a given device (handheld, wearable, implantable), and provide the user of the device with value added information based on the derived locational information (Küpper, 2005; Perusco & Michael, 2007). The location information can be obtained by using various indoor and/or outdoor positioning technologies that differ in their range, coverage, precision, target market, purpose and functionality.Radio frequencies, cellular telecommunications networks and global navigation satellite systems are amongst the main access media used to determine the geographic location of a device (Michael, 2004; Perusco & Michael, 2007).The collected location information can be stored for the purpose of further processing (e.g. analysing the whereabouts of a fleet of emergency service vehicles over a period of time) or combined with other relevant information and sent back to the user in a value-added form (e.g. traffic accidents and alternative routes). The user can either initiate a request for the service or it is triggered automatically when the device enters or leaves or comes in the vicinity of a defined geographic area.

The conventional use of LBS in emergency management is to find the almost exact location of a mobile handset after an emergency call or a distress short message service (SMS).Although the accuracy of the positioning results ranges from a few metres up to several kilometres, the current objective by several governments is to regulate the telecommunications carriers to provide the location information within accuracies between 50 to 150 metres. This type of service is generally known as wireless E911 in Northern America (i.e. Canada and the United States), E112 in the European Union, and similarly, but not officially, E000 in Australia.

But, even with proximate levels of accuracy LBS applications have the ability to create much more value when they are utilised under an all hazards approach by government. For example, with LBS in use,government agencies pertinent to the emergency management portfolio can collaborate with telecommunications carriers in the country to disseminate rapid warnings and relevant safety messages to all active mobile handsets regarding severe weather conditions, an act of terrorism, an impending natural disaster or any other extreme event if it happened or was about to happen in the vicinity of these mobile handsets. For that reason, LBS solutions are critically viewed by different governments around the world as an extremely valuable addition to their arrangements for emergency notification purposes (Aloudat et al., 2007; Jagtman, 2010).

However, in relation to LBS and EM almost no study has undertaken the responsibility of exploring an individual’s acceptance of utilising the services for emergency management. One might rightly ponder on whether any individual would ever forego LBS in a time of emergency. Nonetheless, despite the apparent benefits of this type of electronic service,their commercial utilisation has long raised numerous technical, social, ethical and legal issues amongst users. For example, the quality of the service information being provided, to issues related to the right of citizen privacy, and issues concerning the legal liability of service failure or information disclosure have been raised (O’Connor & Godar, 2003; Tilson et al., 2004; Perusco et al., 2006; Perusco & Michael, 2007; Aloudat & Michael, 2011). Accordingly, the contribution of this paper is to discuss the potential determinants or drivers of a person’s acceptance or rejection for utilising location-based services for emergency management, and propose a conceptual research model that comprises the drivers and justly serves as the theoretical basis needed for further empirical research.

The rest of this paper is organised as follows: Section 2 is a discussion of the factors expected to impact on a person’s perceptions towards the services, and presentation of the theoretical propositions of the expected relationships between the factors. Section 3 introduces the conceptual model and its theoretical foundation. Section 4 outlines the steps taken for pretesting the model via a pilot survey and provides the analysis results of the data collected. Section 5 concludes the paper and discusses the implications of this research work, including the theoretical contributions to the scholarly literature.

2. Determinants of acceptance or rejection

A review of acceptance and adoption literature was conducted to identify, critically assess and then select the factors that would most likely influence individuals’ beliefs regarding the use of LBS for emergencies. This approach has been completely justified by Taylor and Todd (1995), and Venkatesh and Brown (2001) on the basis that there is a wealth of information systems (IS) acceptance research, which minimises the need to extract beliefs anew for each new acceptance setting. The adopted working definitions for the selected factors are summarised in Table 1.

Table 1. Summary of the constructs and their definitions

Factor | Description of the Adopted Working Definition | Based Upon

  • Individual’s attitude towards the use of LBS
    • Individual’s positive or negative feelings towards using LBS in emergencies. Fishbein and Ajzen (1975)
  • Individual’s intention to use LBS
    • Individual’s decision to engage or not to engage in using LBS in emergencies. Fishbein and Ajzen (1975)
  • Trust
    • The belief that allows a potential LBS user to willingly become vulnerable to the use-case outcome of LBS, having taken the characteristics of LBS into consideration, irrespective of the ability to monitor or control the services or the service provider. Mayer et al., (1995), McKnight and Chervany (2001)
  • Risk as perceived by the potential user
    • Individual’s belief of the potential loss and the adverse consequences of using LBS in emergencies and the probability that these consequences may occur if the services are used. Pavlou and Gefen (2004), Heijden et al., (2005)
  • Perceived usefulness
    • Individual perception that using LBS for managing emergencies is useful. Davis et al., (1989) Perceived ease of use The degree to which the prospective user expects LBS to be free of effort. Davis et al., (1989)
  • Visibility
    • The extent to which the actual use of LBS is observed as a solution to its potential users Agarwal and Prasad (1997)
  • Perceived service qualities
    • Individual’s global judgment relating to the superiority of the service. Parasuraman et al., (1988)
  • Perceived currency
    • Prospective user’s perception of receiving up-to-the-minute service information during emergencies. Zeithaml et al., (2000), Yang et al., (2003)
  • Perceived accuracy
    • Prospective user’s perception about the conformity of LBS with its actual attributes of content, location, and timing. Zeithaml et al., (2000), Yang et al., (2003)
  • Perceived responsiveness
    • Prospective user’s perception of receiving a prompt LBS service during emergencies. Parasuraman et al., (1988), Liljander et al., (2002), Yang et al., (2003)
  • Privacy concerns
    • as perceived by the prospective user Individual’s concerns regarding the level of control by others over personal identifiable information. Stone et al., (1983)
  • Collection
    • The concern that extensive amounts of location information or other personal identifiable data will be collected when using LBS during emergencies. Smith et al., (1996), Junglas and Spitzmuller (2005)
  • Unauthorised secondary use
    • The concern that LBS information is collected for emergency purposes but will be used for other purposes without explicit consent from the individual. Smith et al., (1996), Junglas and Spitzmuller (2005)

A further discussion of each proposed factor and the criteria behind its selection are presented in the following sections.

2.1. The Visibility of Location- Based Emergency Services

Many individuals may not be aware of the possible utilisation of location-based services in emergency management and, therefore, it could be argued that the direct advantages and disadvantages of such utilisation are not be vis­ible to them (Pura, 2005; Chang et al., 2007). Individuals who are not aware of the existence of LBS or, basically do not know anything about the capabilities of this type of electronic services in the domain of emergency management, may not develop an appreciation, or even depreciation, towards the services unless they were properly and repeatedly being introduced (exposed) to

LBS emergency management solutions. In other words, people may not be able to accu­rately judge the advantages or disadvantages of LBS unless the application of LBS is visible to them. It should be noted however, that the exposure effect does not necessarily increase the perceived functionality of the services, but it can greatly enhance or degrade the percep­tions of an individual about the usefulness of the services, thus influencing their acceptance or rejection of the services (Thong et al., 2004).

One of the key attributes of the Diffusion of Innovation (DOI) Theory by Rogers (1995) is the construct of observability, which is “the degree to which the results of an innovation are observable to others” (p. 16). Innovation is “an idea, practice, [technology, solution, service] or object that is perceived as new by an individual” (Rogers, 1995,p. 135). Later, observability was perceived by Moore and Benbasat (1991) as two distinct constructs of demonstrability and visibility. Demonstrability is “the tangibility of the results of using an innovation,” and visibility is “the extent to which potential adopters see the innovation as being visible in the adoption context” (Agarwal & Prasad, 1997, p. 562). Further interpretation of visibility surmises that, an innovation, application, solution, technology or service may not be new but it could be un­known for its prospective users. This probably is the case with LBS and their application, where the services have been around for several years now, yet their general usage rates, especially in the contexts of emergency management are still extremely limited worldwide (Frost & Sul­livan, 2007; O’Doherty et al., 2007; Aloudat & Michael, 2010).

The main contribution of the DOI theory to this paper is the integration of its visibility construct in the proposed conceptual model. Visibility is defined as the extent to which the actual utilisation of LBS in EM is observed as a solution to its potential users. Considering the arguments above and following a line of reasoning in former studies, such as Karahanna et al., (1999) and Kurnia and Chien (2003), the following proposition is given:

Proposition P1: The perception of an individual of the usefulness of location-based services for emergency management is positively related to the degree to which the services as a solution are visible to him or her.

2.2. The Quality Features of Location-Based

Emergency Services

A classic definition of service quality is that it is “a judgment, or attitude, relating to the superiority of the service” (Parasuraman et al., 1988, p. 16). The quality is, therefore, a result of personal subjective understanding and evaluation of the merits of the service. In the context of emergency management, individuals may not always have comprehensive knowledge about the attributes of LBS in such context or the capabilities of the services for emergencies. Consequently, individuals may rely on indirect or inaccurate measures to judge such attributes. Therefore, there is a need to create verifiable direct measurements in order to present the subjective quality (perceived) in an objective way (determinable dimensions) in order to examining the impact of the quality features of LBS on people’s opinions towards utilising the services for EM.

The quality of electronic services (e-ser­vices) has been discerned by several research­ers as a multifaceted concept with different dimensions proposed for different service types (Zeithamletal., 2002; Zhang&Prybutok, 2005). Unfortunately, in the context of LBS there is no existing consummate set of dimensions that can be employed to measure the impact of LBS quality features on people’s acceptance of the services. Nonetheless, a set by Liljander et al., (2002) can serve as a good candidate for this purpose. The set of Lilj ander et al., was adapted from the well-known work of Parasuraman et al., (1988); the SERVQUAL model, but they redesigned the model to accurately reflect the quality measurements of e-services. The dimensions of Liljander et al., (2002) include reliability, responsiveness, customisation, as­surance/trust, and user interface.

Since LBS belongs to the family of e-ser­vices, most of the aforementioned dimensions in Liljander’s et al., model are highly pertinent and can be utilised to the benefit of this research. In addition, as the dimensions are highly adaptable to capture new media (Liljander et al., 2002) then it is expected that these dimensions would be capable of explaining people’s evaluation towards the introduction ofLBS into the modern emergency management solutions. Moreover, the few number of these dimensions are expected to provide a parsimonious yet reliable approach to study the impact of LBS quality features on people’s opinions without the need to employ larger scales such as Zeithaml’s et al., (2000), which comprises eleven dimensions, making it almost impractical to be employed along with other theorised constructs in any proposed conceptual model.

The interpretation of the reliability concept follows Kaynama and Black (2000), Zeithaml et al., (2000) and Yang et al., (2003) definitions as the accuracy and currency of the product information. For LBS to be considered reli­able, the services need to be delivered with the best possible accurate state and within the promised time frame (Liljander et al., 2002). This is highly relevant to emergency situations, taking into account that individuals are most likely on the move and often in time-critical circumstances that always demand accurate and current services.

Since it is reasonable to postulate that the success of LBS utilisation in emergency situa­tions depends on the ability of the government, as the provider of the service, to disseminate the service information to a large number of people in a timely fashion, and due to the fact that fast response to changing situations, or to peoples’ emergent requests, is considered as providing timely information to them then timeliness is closely related to responsiveness (Lee, 2005). Therefore, investigating the responsiveness of LBS would also be relevant in this context.

Liljander’s et al., (2002) user interface and customisation dimensions are not explic­itly pertinent to EM. The dimension of User interface comprises factors such as aesthetics, something that cannot actually be relevant to an emergency situation. Customisation refers to the state where information is presented in a tailored format to the user. This can be done for and by the user. As LBS are customised based on the location of the recipient and the type of information being sent to the user then customisation is already an intrinsic quality in the core features of these services.

Therefore, the service quality dimensions that are expected to impact on people’s accep­tance of LBS for EM include:

1. Perceived currency: the perceived qual­ity of presenting up-to-the-minute service information during emergency situations;

2. Perceived accuracy: individual’s percep­tion about the conformity of LBS with its actual attributes of content, location, and timing;

3. Perceived responsiveness: individual’s perception of receiving a prompt service (Parasuraman et al., 1988; Liljander et al., 2002; Yang et al., 2003).

Although perceived service quality is a representation of a person’s subjective ex­pectations of LBS, and not necessarily a true interpretation of the actual attributes of the service, it is expected nonetheless that these perceptions would convey an accepted degree of quality the prospective user anticipates in LBS, given the fact that limited knowledge about the actual quality dimensions are available to them in the real world.

It could be posited that an individual’s perception of how useful LBS are in emergen­cies can be highly influenced by the degree to which he or she perceives the services to be accurate, current and responsive. Here, the conceptual model follows the same rationale of TAM, which postulates perceived ease of use as a direct determinant of the perceived usefulness. Perceived ease of use is defined as “the degree to which an individual believes that using a particular system would be free of physical and mental effort” (Davis, 1989, p. 320). It is justifiable therefore to postulate that ease of use is related to the technical qual­ity features of LBS since the evaluation of an individual to the service easiness is highly associated with the convenient design of the service itself. This explains why ease of use has been conceived before by several researchers as one of the dimensions of the service quality (Zeithaml et al., 2002; Yang et al., 2003; Zhang & Prybutok, 2005).

Building upon the mentioned arguments and following the trails of TAM, LBS quality features of currency, accuracy and responsive­ness are theorised in the conceptual model as direct determinants of the perceived usefulness and, accordingly, the following propositions are defined:

Proposition P2a: There is a positive relation­ship between the perceived currency of location-based services and the perceived usefulness of the services for emergency management;

Proposition P2b: There is a positive relation­ship between the perceived accuracy of location-based services and the perceived usefulness of the services for emergency management;

Proposition P2c: There is a positive relation­ship between the perceived responsive­ness of location-based services and the perceived usefulness of the services for emergency management.

2.3. Risks Associated with Using Location-Based Emergency Services

Risk of varying types exists on a daily basis in a human’s life. In the extreme situations, such as emergencies and disasters, perceptions of risk stem from the fact that the sequence of events and magnitude of the outcome are largely unknown or cannot be totally controlled. If one takes into account that risky situations generally affect the confidence of people in technology (Im et al., 2008), then the decision of an individual to accept LBS for EM might be influenced by his or her intuition that these electronic services could be easily disrupted since the underlying infrastructure may suffer heavily in severe conditions usually associated with such situations, especially in large-scale disasters. A telling example is Hurricane Katrina, in 2005, which caused serious dis­ruptions throughout New Orleans, Louisiana, and rendered inoperable almost every piece of public and private infrastructure in the city. As a result, uncertainty about the intensity of extreme situations coupled with their unfore­seeable contingencies may have long-term implications on one’s perceptions towards the use of all technologies, including LBS, in life- threatening situations, such as emergencies.

Since it is practically rational to believe that individuals would perceive different types of risk in emergencies, then it might be highly difficult to examine particular facets of risk as being separate to one another since they can all be inextricably intertwined. Therefore, follow­ing the theoretical justification of Pavlou (2003), perceived risk is theorised in the conceptual model as a high-order unidimensional concept.

Perceived risk is defined as the individual’s belief of the potential loss and the adverse consequences of using LBS in emergencies and the probability that these consequences may occur if the services are used. Bearing in mind the high uncertainty that is usually associated with such events, this paper puts forward the following proposition:

Proposition P3: The risks perceived in using location-based services for emergency management have a negative influence on the perceived usefulness of the services.

2.4. People’s Trust in Location- Based Emergency Services

Trust has long been regarded as an important aspect of human interactions and their mutual relationships. Basically, any intended interac­tion between two parties proactively requires an element of trust predicated on the degree of certainty in one’s expectations or beliefs of the other’s trustworthiness (Mayer et al., 1995;

Li, 2008). Uncertainty in e-services, including LBS, leads individuals to reason about the capabilities of the services and their expected performance, which eventually brings them to either trust the services by willingly accept to use them or distrust the services by simply reject to use them. In emergencies, individuals may consider the possible risks associated with LBS before using this kind of services. There­fore, individuals are likely to trust the services and engage in a risk taking relationship if they perceive the benefits of LBS outweigh the risks. However, if high levels of risk are perceived, then it is most likely that individuals do not have enough trust in the services and, therefore, will not engage in a risk-taking behaviour by using them (Mayer et al., 1995). Consequently, it could be posited here that trust in LBS is a pivotal determinant of accepting the services, especially in emergency situations where great uncertainty is always present.

Trust has generally been defined as the belief that allows a person to willingly become vulnerable to the trustee after having taken the characteristics of the trustee into consideration, whether the trustee is another person, a product, a service, an institution or a group of people (McKnight & Chervany, 2001). In the context of LBS, the definition encompasses trust in the service provider (i.e. government in col­laboration with telecommunications carriers) and trust in the services and their underlying infrastructure. This definition is in agreement with the generic model of trust in e-services, which encompasses two types of trust: trust in the government agency controlling and provid­ing the service and trust in the technology and underlying infrastructure through which the service is provided (Tan & Thoen, 2001; Carter & Bélanger, 2005; Horkoffet al., 2006).

Since the willingness to use the services can be regarded as an indication that the person has taken into account the characteristics of both the services and the provider of the services, including any third parties in between, then it is highly plausible to say that investigating trust propensity in the services would provide a prediction of trust in both LBS and their provider. Some could reasonably argue that trust should be examined with the proposition that the person knows or, at least, has a presumption of knowledge about the services, their usefulness and the potential risks associated with them. Nonetheless, it should be noted here that trust is, ipso facto, a subjective interpretation of the trustworthiness of the services, given the limited knowledge of the actual usage of LBS in the domain of emergency management in the real world.

Despite the general consensus of the ex­istence of a mutual relationship between trust and risk, the two concepts should be investi­gated separately when examining their impact on the acceptance of LBS since both usually show a different set of antecedents (Junglas & Spitzmuller, 2006). Trust and perceived risks are essential constructs when uncertainty is present (Mayer et al., 1995). However, each of the two has a different type of relationship with uncertainty. While uncertainty augments the risk perceptions of LBS, trust reduces the individual’s concerns regarding the possible negative consequences of using the services, thus alleviating uncertainty around their per­formance (Morgan & Hunt, 1994; Nicolaou & McKnight, 2006).

Therefore, as trust in LBS lessens the uncer­tainty associated with the services, thus reduc­ing the perceptions of risk, this paper theorises that perceived risk is negatively related to an individual’s trust in LBS. This is in line with a large body of previous empirical research, which supports the influence of trust on the perceptions of risk (Gefen et al., 2003). Furthermore, by reducing uncertainty trust is assumed to create a positive perspective regarding the usefulness of the services and provide expectations of an acceptable level of performance. Accordingly, the following propositions are defined:

Proposition P4: Trust in location-based ser­vices positively influences the perceived usefulness of the services for emergency management;

Proposition P5: Trust in location-based ser­vices negatively impacts the risks perceived from using the services for emergency management.

2.5. Privacy Concerns

Pertaining to Location-Based Emergency Services

In the context of LBS, privacy pertains mainly to the locational information of the person and the degree of control he or she exercises over this type of information. Location information is regarded as highly sensitive data that when collected over a period of time or combined with other personal information can infer a great deal about a person’s movements and in turn reveal more than just one’s location. Indeed, Clarke and Wigan (2008) noted that knowing the past and present locations of a person could, amongst other things, enable the discovery of the person’s behavioural patterns in a way that could be used, for example, by governments to create a suspicion, or by the private sector to conduct target marketing.

Privacy concerns could originate when individuals become uncomfortable of the per­ception that there is a constant collection of their personal location information, the idea of its perennial availability to other parties, and the belief that they have incomplete control over the collection, the extent, the duration, the timing or the amount of data being collected about them.

The traditional commercial use of LBS, where a great level of detail about the service application are regularly available for the end user, may not create much sensitivity towards privacy since in most cases the explicit consent of the user is a prerequisite for initiating these services. This is completely true in the markets of the United States, Europe and Australia (Gow, 2005; Code of Practice of Passive Loca­tion Services in the UK, 2006; The Australian Government: Attorney General’s Department, 2008). However, in emergencies pertinent government departments and law enforcement agencies have the power to temporarily waive the person’s right to privacy based on the as­sumption that the consent is already implied when collecting location information in such situations (Gow, 2005; Pura, 2005).

The implications of waiving away the consent, even temporarily, may have long-term adverse effects on people’s perspectives towards the services in general. It also has the potential to raise a debate on to what extent individuals are truly willing to relinquish their privacy in exchange for a sense of continuous security (Perusco et al., 2006). The debate could be easily augmented in the current political climate of the so-called “war on terror” where governments have started to bestow additional powers on themselves to monitor, track, and gather personal location information in a way that never could have been justified before (Perusco & Michael, 2007). As a result, privacy concerns are no exception to emergency management.

Four privacy concerns have been identified previously by Smith et al. (1996). They are col­lection, unauthorised secondary use, errors in storage, and improper access of the collected data. These concerns are also pertinent to LBS (Junglas & Spitzmuller, 2006). Collection is defined as the concern that extensive amounts of location information or other personal identifi­able information would be collected when using LBS for emergency management. Unauthorised secondary use is defined as the concern that LBS information is collected for the purposes of emergency management but ultimately is used for other purposes and without explicit consent from the individual. Errors in storage describe the concern that the procedures taken against accidental or deliberate errors in stor­ing location information are inadequate. And improper access is the concern that the stored location information is accessed by parties who do not have the authority to do so.

Two particular privacy concerns, collection and unauthorised secondary use, are integrated into the conceptual model. These concerns are expected to have a direct negative impact on the perceived usefulness of LBS. Other prominent constructs of trust and perceived risk are assumed to have mediating effects on the relationship between privacy concerns and perceived usefulness since both constructs (i.e. trust and perceived risk) could be reasonably regarded as outcomes of the assessment of the individual of the privacy concerns. For instance, if a person does not have much concern about the privacy of his or her location information then it is most likely he or she trusts the services, thus perceiving LBS to be beneficial and useful. On the other hand, if the perceptions of privacy concerns were high then the individual would not probably engage in a risk taking behaviour, resulting in lower perceptions of the usefulness of the services.

Accordingly, perceived privacy concerns are theorised in the conceptual model as direct determinants of both trust and perceived risk. While perceived privacy concerns are postu­lated to have a negative impact on the trust in the services, they are theorised to have a positive influence on the risks perceived from using location-based services for emergency management.

Considering the above mentioned argu­ments, the following propositions are made:

Proposition P6a: Collection, as a perceived privacy concern, negatively impacts the perceived usefulness of location-based services for emergency management;

Proposition P6b: Unauthorised secondary use, as a perceived privacy concern, nega­tively impacts the perceived usefulness of location-based services for emergencies;

Proposition P7a: Collection, as a perceived privacy concern, has a negative impact on trust in location-based services;

Proposition P7b: Unauthorised secondary use, as a perceived privacy concern, has a negative impact on trust in location-based services;

Proposition P8a: The risks perceived from us­ing location-based services for emergency management are positively associated with the perceived privacy concern of collection;

Proposition P8b: The risks perceived from us­ing location-based services for emergency management are positively associated with the perceived privacy concern of unautho­rised secondary use.

3. A CONCEPTUAL MODEL OF LOCATION-BASED EMERGENCY SERVICES ACCEPTANCE

The determinants of LBS acceptance are inte­grated into a conceptual model that extends and builds upon the established theory of reasoned action (TRA), applied in a technology-specific adaptation as a technology acceptance model (TAM). See Figure 1.

Figure 1. The conceptual model of location-based emergency services acceptance

TAM postulates that usage or adoption behaviour is predicted by the individual’s inten­tion to use location-based emergency services. The behavioural intention is determined by the individual’s attitude towards using the services. Both the attitude and intention are postulated as the main predictors of acceptance. The at­titude, in turn, is influenced by two key beliefs: perceived ease of use and perceived usefulness of LBS. TAM also grants a basis for investi­gating the influence of external factors on its internal beliefs, attitude, and intention (Davis etal., 1989).

As illustrated in the model in Figure 1, a set of propositions that reflect the theoretical relationships between the determinants of ac­ceptance are presented as arrowed lines that start from the influential factor and end into the dependent construct. The theorised factors supplement TAM’s original set and are totally in agreement with its theoretical structural formulation. That is, all of the hypothesised effects of the factors would only be exhibited on the internal constructs (i.e. attitude and inten­tion) through the full mediation of the internal beliefs (i.e. perceived usefulness or perceived ease of use).

4. MODEL PRETESTING

A pilot survey was conducted in order to test the reliability of the model’s constructs. IS literature places great emphasis on the importance of the piloting stage as part of the model’s development (Baker, 1999; Teijlingen & Hundley, 2001). In essence, the pilot survey is an experimental study that aims to collect data from a small set of subjects in order to discover any defects or flaws that can be corrected, before the conceptual model is tested in a large scale survey (Baker, 1999; Zikmund, 2003).

4.1. Measurement of Constructs

To increase construct measurement reliability, most of the items in the survey, which have been tested and validated in former studies, were adapted to reflect the specific context of this research i.e. location-based services. It should be emphasised here that the use of existing items in the literature is completely a valid approach (Churchill, 1979).

The scales of TAM’s perceived useful­ness and perceived ease of use were measured based on the original scales of Davis (1989). Attitude measurement items were adopted from two studies by Agarwal and Prasad (1999) and Van der Heij den et al., (2001). Intention to use items were measured using scales adopted from Junglas and Spitzmuller (2005). Trust measure­ments were adopted from Mayer et al., (1995) and Junglas and Spitzmuller (2005). Pavlou and Gefen (2004)perceived risk items were adopted given the emphasis on emergency management. The items of the visibility construct were ad­opted from a study by Karahanna et al., (1999). The items of perceived privacy concerns were adopted from Smith et al., (1996) and Junglas and Spitzmuller (2005). The statements of perceived service qualities were not directly available but have been operationalized based on the recommendations of Churchill (1979), who suggested that each statement should express limited meaning, its dimensions should be kept simple and the wording should be straightforward.

4.2. Survey Design

The survey included an overview and introduction of the application of location-based services in emergency management. In addition, the survey provided the participants with four vignettes. Each vignette depicted a hypothetical scenario about the possible uses of LBS applications for managing potential hazardous situations. The scenarios covered specific topics to emergencies such as an impending natural disaster, a situation where a person was par­ticularly in need of medical assistance, severe weather conditions and a national security issue. Two of the vignettes were designed to present location-based services in a favourable light, and the other two vignettes were designed to draw out the potential pitfalls and limitations of LBS in EM. Through the use of vignettes, participants were encouraged to project their true perceptions about the services while, at the same time, involved with creating a meaning related to their potential use in these events. Creating this meaningful attachment in context was very important, as it acted to inform par­ticipant responses, given the utilisation of LBS in EM is still in its nascent stages worldwide.

A self-administrated questionnaire was used to collect data from participants. A five- point Likert rating scale was used throughout the questionnaire. The survey which predominantly yielded quantitative results also included one open-ended question in order to solicit more detailed responses from the participants.

4.3. The Sample of the Pilot Survey

Six hundred pilot surveys were randomly distributed by hand, in November 2008, to households’ mailboxes in the Illawarra region and the City of Wollongong, New South Wales, Australia. Participants were asked to return their copies to the researcher within three weeks in the enclosed reply-paid envelope provided with the survey.

Although, this traditional approach is time- consuming and demands a lot of physical effort, it was favoured as it is more resilient to social desirability effects (Zikmund, 2003), where respondents may reply in a way they think it is more socially appropriate (Cook & Campbell, 1979). In addition, it is generally associated with high perceptions of anonymity, something that may not be completely assured or guaranteed by other methods of data collection since they tend to disclose some personal information, such as name, telephone number, email address or IP address, which may cause privacy infringements (Zikmund, 2003; Michaelidou & Dibb, 2006).

The main concern was to end up with a low response rate, an issue several researchers have noted before (Yu & Cooper, 1983; Galpin, 1987; Zikmund, 2003). Indeed, a total of 35 replies were returned, yielding an extremely low response rate of 5.8%. Two incomplete replies were excluded, leaving only 33 usable surveys for the final analysis.

Although it is a desirable goal to end up with a high response rate to have more confidence in the results, and to be able to comment on the significance of the findings (Emory & Cooper, 1991; Saunders et al., 2007), it should be noted that the pilot study’s main objective is to serve as an initial test (pretest) of the conceptual model and does not, in any away, attempt to generalise its results to a new population. Therefore, the generalisability of the findings is not an issue of contention here (Morgan & Hunt, 1994).

Nonetheless, there is much discussion in the literature of what constitutes a “good” response rate of the pilot survey; hence, its acceptable sample size. Hunt et al., (1982), for example, stated that several researchers simply recom­mended a “small” sample size, others indicated a sample size between 12 and 30 as sufficient to fulfil the requirements of the analysis. Anderson and Gerbing (1991) pretested a methodology for predicting the performance of measures in a confirmatory factor analysis with a sample size of 20. They posited the consistency of this small sample size with the general agreement between researchers that the number should be relatively small. Reynolds et al., (1993) noted that the sample size of pilot surveys is generally small when discussed in the literature, ranging from 5 to 100, an depending on the goal of the study.

The main concern, however, when as­sessing the effect of a low response rate on the validity of the survey is when taking into account the non-response bias (Cummings etal., 2001; Fowler, 2001). The bias stems from the possibility that only the sample population who are interested in the topic of the pilot survey would provide their responses back (Fowler, 2001). Nonetheless, if non-respondents’ char­acteristics are systematically similar to those of the respondents, then the non-response bias is not necessarily reduced by an increased response rate (Cummings et al., 2001).

Kanuk and Berenson (1975) in a compre­hensive literature review of the factors influenc­ing response rates to mail surveys, examined the significant differences between respondents and non-respondents, taking into account a broad range of personality traits, socio-economic and demographic characteristics. The researchers concluded that the only consistent difference was that respondents tend to be better educated.

Since respondents of this pilot survey were of all levels of education, as illustrated in Table 2, where for example, 7 respondents had a secondary education while 7 had post­graduate degrees, representing the low-level educated and the well-educated population, then it is argued that non-respondents did not differ significantly from the survey’s responders, suggesting that non-response bias was not present, and therefore, low response rate is not an issue here. Thus, the pilot survey with its low response rate, and for which no systematic differences between respondents and non-respondents exist is considered valid for the analysis.

Table 2. Respondents education

The traditional benchmarks in mail survey studies that positioned a 50 percent response rate as adequate and 70 percent as very good (Babbie, 1998) should be reappraised. Current trends of thinking reject these unconditional criterion levels and assertively demand for a contextual approach where response rate is considered in conjunction with the goal of the study, its design and the nature of its sample (Fife-Schaw, 2000; Fowler, 2001).

4.4. Reliability of the Measurements

Reliability expresses the extent to which the measures in the instrument are free of random errors, thus yielding similar consistent results if repeated (Yin, 2003; Zikmund, 2003). Reli­ability reflects the internal consistency of the scale items measuring the same construct for the selected data. Hence, it is basically an evaluation of the measurement accuracy (Straub, 1989). Nunnally and Bernstein (1994) recommended the calculation of Cronbach’s alpha coefficients to assess reliability. Straub (1989) suggested an alpha value of 0.80 as the lowest accepted threshold. However, Nunnally and Bernstein (1994) stated that 0.60 is accepted for newly developed measures, otherwise, 0.70 should serve as the lowest cut-off value.

The common threshold value of 0.7 was selected as the minimum acceptable level based on the recommendations of Nunnally and Bern­stein (1994) and Agarwal and Karahanna (2000). The results ofthe analysis are presented in Table 3, revealing acceptable values for nearly all measurements except perceived accuracy which was found to be 0.684. Accordingly, one highly complex item was excluded and the revised construct was put again through another round of validation, after which a higher acceptable coefficient of 0.724 was yielded.

Table 3. Cronbach’s alpha reliability statistics

Another reliability scale assessment, through the computation of composite reli­ability, was also conduted. It is similar in interpretation to Cronbach’s alpha test, but it applies the actual loadings of the items and does not assume weight equivalency among them (Chin, 1998). Moreover, Raykov (1997) showed that Cronbach’s test may under-estimate the reliability of the congeneric measures, leav­ing the researcher with lower-bound estimates of the true reliability scores. As illustrated in Table 4, the results show that all scores far exceed the 0.7 recommended threshold (Hair et al., 2006). Consequently, these results bring more confidence in the conceptual model and its constructs as they have demonstrated high internal consistency under the evaluation of two separate reliability tests.

Table 4. Composite reliability statistics

Table 4. Composite reliability statistics

5. Conclusion and Implications

Despite the large body of research that has been written to augment our understanding of the determinants of acceptance and adoption of location-based services in various usage contexts, the scarcity of theoretical and empiri­cal studies that examine people’s acceptance of LBS in the realm of emergencies is noted. This is clearly a gap in the current research in which this study makes a significant contribu­tion. This paper is a discussion of unexplored determinants in relation to user acceptance of location-based emergency services. These include the visibility of LBS applications in the context of emergency management, the privacy of individuals and their perceived concerns regarding extensive collection and unauthorised secondary use of the collected data by governments, risks as associated with using LBS for EM, trust in the services and in the service provider, and the current, accurate and responsive quality features of the services being offered for emergency management.

This paper proposed a conceptual model based on the aforementioned determinants that should serve as the theoretical basis for future empirical examination of acceptance. The model significantly extends and builds upon the theory of reasoned action, applied in a technology-specific adaptation as a technology acceptance model.

Although the conceptual model was built specifically to predict an individual’s acceptance of LBS for emergency management, the model can nonetheless be used as a generic candidate model in empirical studies to predict people’s acceptance of location-based services in other security usage contexts, applications, scenarios or settings. This is made possible due to the fact that all of the theorised factors of the model are highly relevant to the intrinsic characteristics of LBS. Examples of where the model would be deemed particularly useful include law enforce­ment applications, such as matters related to the surveillance implications of location-based services, and location-based evidence captures and social issues pertaining to the application of the services, such as arrest support, traffic violations or riot control.

In addition, the proposed model can be used not only to identify the predictors of acceptance but also to help the service providers to design their solutions in a way that can fairly meet the end user expectations. For instance, the model identifies perceived usefulness, perceived ease of use and perceived service quality features as expected determinants of acceptance. Once em­pirically tested, the impact of these factors can provide guidelines to developers of the services to accommodate the right service requirements that reflect acceptable performance standards for the potential users.

Finally, the application of location-based services in today’s society has the potential to raise concerns amongst users. These concerns could easily be augmented in highly sensitive settings, such as emergency management or counter-terrorism solutions. While this paper presents theoretical foundations, it is hoped the knowledge obtained here can be considered by governments and interested researchers towards the formation of developing more successful deployment and diffusion strategies for loca­tion-based emergency services globally. The purpose of this paper is to help in channelling such strategies in the right direction.

References

Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived volun­tariness in the acceptance of information technologies. Decision Sciences, 28(3), 557–582. doi: 10.111 1/j. 1540-5915. 1997.tb01322.x.

Aloudat,A., &Michael,K. (2010). Toward the regula­tion of ubiquitous mobile government: A case study on location-based emergency services in Australia. Electronic Commerce Research, 10(4).

Aloudat,A., &Michael, K. (2011). The socio-ethical considerations surrounding government mandated location-based services during emergencies: An Australian case study. In M. Quigley(Ed.), ICT ethics and security in the 21st century: New developments and applications (1sted.,pp. 129–154). Hershey,PA: IGI Global. doi: 10.40 18/978-1-60960-573-5.ch007.

Aloudat, A., Michael, K., & Jun, Y. (2007). Location- based services in emergency management- from government to citizens: Global case studies. In P. Mendis, J. Lai, E. Dawson, & H. Abbass (Eds.), Re­cent advances in security technology (pp. 190–201). Melbourne, Australia: Australian Homeland Security Research Centre.

Canton, L. G. (2007). Emergency management: Concepts and strategies for effective programs (1st ed.). Hoboken, NJ: John Wiley & Sons, Inc..

Carter, L., & Bélanger, F. (2005). The utilization of e-government services: Citizen trust, innovation and acceptance factors’. Information Systems Journal, 15(1),5–25.doi:10.1111/j.1365-2575.2005.00183.x.

Chang, S., Hsieh, Y.-J., Lee, T.-R., Liao, C.-K., & Wang, S.-T. (2007). A user study on the adoption of location based services. In Advances in web and network technologies, and information management (pp. 276-286).

Clarke, R., & Wigan, M. (2008). You are where you have been. In K. Michael, & M. G. Michael (Eds.), Australia and the new technologies: Evidence based policy in public administration (pp. 100–114). Can­berra: University of Wollongong.

Code of Practice of Passive Location Services in the UK. (2006). Industry code of practice for the use of mobile phone technology to provide passive location services in the UK. Retrieved August 23, 2007, from http://www.mobilebroadbandgroup.com/documents/ UKCoP_location_servs_210706v_pub_clean.pdf

Davis, F. D. (1989). Perceived usefulness, perceived ease ofuse, and user acceptance of information tech­nology. Management Information Systems Quarterly, 13(3), 318–340. doi:10.2307/249008.

Frost and Sullivan research service. (2007). Asia Pacific location-based services (LBS) mar­kets. Retrieved August 28, 2007, from http:// www.frost.com/prod/servlet/report-brochure.pag?id=P08D-01-00-00-00

Gefen, D., Srinivasan Rao, V., & Tractinsky, N. (2003, January 6-9). The conceptualization of trust, risk and their electronic commerce: the need for clarifications. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences. IEEEXplore Database.

Gow, G. A. (2005). Pinpointing consent: Location privacy and mobile phones. In K. Nyíri (Ed.), A sense of place: The global and the local in mobile communication (pp. 139–150). Vienna, Austria: Passagen Verlag.

Horkoff, J., Yu, E., & Liu, L. (2006). Analyzing trust in technology strategies. In Proceedings of the the 2006 International Conference on Privacy, Security and Trust: Bridge the Gap Between PST Technologies and Business Services, Markham, Ontario, Canada.

Im, I., Kim, Y., & Han, H.-J. (2008). The effects of perceived risk and technology type on users’ accep­tance of technologies. Information & Management, 45(1), 1–9. doi: 10. 1016/j.im.2007.03.005.

Jagtman, H. M. (2010). Cell broadcast trials in the Netherlands: Using mobile phone technology for citizens’alarming. Reliability Engineering & System Safety, 95(1), 18–28. doi: 10. 1016/j.ress.2009.07.005.

Junglas,I., & Spitzmuller, C. (2006). Personality traits and privacy perceptions: An empirical study in the context of location-based services. In Proceedings of the International Conference on Mobile Busi­ness, Copenhagen, Denmark (pp. 11). IEEEXplore Database.

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre- adoption and post-adoption beliefs. Management Information Systems Quarterly, 23(2), 183–213. doi: 10.2307/249751.

Kaynama, S. A., & Black, C. I. (2000). A proposal to assess the service quality of online travel agencies. Journal of Professional Services Marketing, 21(1), 63–68. doi: 10. 1300/J090v21n01_05.

Krishnamurthy, N. (2002, December 15-17). Using SMS to deliver location-based services. In Proceed­ings of the 2002 IEEE International Conference on Personal Wireless Communications, New Delhi, India.

Küpper, A. (2005). Location-based services: Fundamentals and operation (1st ed.). Chichester, UK: John Wiley & Sons Ltd. doi:10.1002/0470092335.

Kurnia, S., & Chien,A.-W. J. (2003, June 9-11). The acceptance of online grocery shopping. In Proceed­ings of the 16th Bled eCommerce Conference, Bled, Slovenia.

Lee, T. (2005). The impact of perceptions of interac­tivity on customer trust and transaction intentions in mobile commerce. Journal of Electronic Commerce Research, 6(3), 165–180.

Li, P. P. (2008). Toward a geocentric framework of trust: An application to organizational trust. Man­agement and Organization Review, 4(3), 413–439. doi: 10.111 1/j. 1740-8784.2008.00120.x.

Liljander, V., Van-Riel, A. C. R., & Pura, M. (2002). Customer satisfaction with e-services: The case of an on-line recruitment portal. In M. Bruhn, & B. Stauss (Eds.), Jahrbuch Dienstleistungs management 2002 – Electronic Services (1st ed., pp. 407–432). Wiesbaden, Germany: Gabler Verlag.

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734.

McKnight, D. H., & Chervany, N. L. (2001). What trust means in e-commerce customer relationships: An interdisciplinary conceptual typology. Interna­tional Journal of Electronic Commerce, 6(2), 3 5–59.

Michael, K. (2004). Location-based services: A ve­hicle for IT&T convergence. In K. Cheng, D. Webb, & R. Marsh (Eds.), Advances in e-engineering and digital enterprise technology (pp. 467–478). Profes­sional Engineering Pub..

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222. doi:10.1287/isre.2.3. 192.

Morgan, R. M., & Hunt, S. D. (1994). The commit­ment-trust theory of relationship marketing. Journal of Marketing, 58(3), 20. doi: 10.2307/1252308 

Nicolaou, A. I., & McKnight, D.H. (2006).Perceived information quality in data exchanges: Effects on risk, trust, and intention to use. Information Systems Re­search, 17(4), 332–351. doi: 10. 1287/isre. 1060.0103.

O’Connor, P. J., & Godar, S. H. (2003). We know where you are: The ethics of LBS advertising. In B. E. Mennecke, &T. J. Strader (Eds.),Mobile commerce: Technology, theory, and applications (pp.211–222). Hershey, PA: IGI Global. doi: 10.4018/978-1-59140- 044-8.ch013.

O’Doherty, K., Rao, S., & Mackay, M. M. (2007). ‘Young Australians’ perceptions of mobile phone content and information services: An analysis of the motivations behind usage. Young Consumers: Insight and Ideas for Responsible Marketers, 8(4),257–268. doi:10.1 108/17473610710838617.

Parasuraman, A., Berry, L., & Zeithaml, V. (1988). SERVQUAL: A multiple-item scale for measuring service quality. Journal of Retailing, 64(1), 12–40.

Pavlou, P. A. (2003). Consumer acceptance of elec­tronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101–134.

Perusco, L., & Michael, K. (2007). Control, trust, privacy, and security: Evaluating location-based services. IEEE Technology and Society Magazine, 4–16. doi:10.1109/MTAS.2007.335564.

Perusco, L., Michael, K., & Michael, M. G. (2006, October 11-13). Location-based services and the privacy-security dichotomy. In Proceedings of the Third International Conference on Mobile Computing and Ubiquitous Networking,London,UK(pp. 9 1-98). Research Online: University of Wollongong Database.

Pura, M. (2005). Linking perceived value and loyalty in location-based mobile services. Managing Service Quality, 15(6), 509–538. doi:10.1 108/096045205 10634005.

Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York, NY: Free Press.

Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: Measuring individuals’ con­cerns about organizational practices’. Management Information Systems Quarterly, 20(2), 167–196. doi: 10.23 07/249477.

Tan, Y.-H., & Thoen, W. (2001). Toward a generic model of trust for electronic commerce. International Journal of Electronic Commerce, 5(2), 6 1–74.

The Australian Government: Attorney General’s Department. (2008). Privacy act 1988: Act No. 119 of 1988 as amended. the Office of Legislative Drafting and Publishing. Retrieved August 2, 2008, from http:// www.comlaw.gov.au/ComLaw/Legislation/Act­Compilation1.nsf/0/63C00ADD09B982ECCA257490002B9D57/$file/Privacy1988_WD02HYP.pdf

Thong, J. Y. L., Hong, W., & Tam, K. Y. (2004). What leads to acceptance of digital libraries? Communications of the ACM, 47(11), 78–83. doi: 10.1145/1029496.1029498.

Tilson, D., Lyytinen, K., & Baxter, R. (2004, Janu­ary 5-8). A framework for selecting a location based service (LBS) strategy and service portfolio. In Proceedings of the 3 7th Annual Hawaii International Conference on System Sciences, Big Island, HI. IEEEXplore Database.

Weiss, D., Kramer, I., Treu, G., & Kupper, A. (2006, June 26-29). Zone services -An approach for location-based data collection. In Proceedings of the 8th IEEE International Conference on E-Commerce Technology, The 3rd IEEE International Confer­ence on Enterprise Computing, E-Commerce, and E-Services, San Francisco, CA.

Yang, Z., Peterson, R. T., & Cai, S. (2003). Services quality dimensions of Internet retailing: An explor­atory analysis. Journal of Services Marketing, 17(7), 685–700. doi: 10.1108/08876040310501241.

Zeithaml, V. A., Parasuraman, A., & Malhotra, A. (2000). A conceptual framework for understanding e-service quality: Implications for future research and managerial practice. MSI Working Paper Series, (WorkingPaper00-1 15), Marketing Science Institute, Cambridge, MA.

Zeithaml, V. A., Parasuraman, A., & Malhotra, A. (2002). Service quality delivery through web sites: A critical review of extant knowledge. Academy of Marketing Science, 30(4), 362. doi: 10.1177/009207002236911.

Zhang, X., & Prybutok, V. R. (2005). A consumer perspective of e-service quality. IEEE Transactions on Engineering Management, 52(4), 461–477. doi: 10.1 109/TEM.2005.856568.

Keywords: Acceptance, Location-Based Emergency Services, Privacy, Risk, Service Quality, Technology Acceptance Model (TAM), Theory of Reasoned Action (TRA), Trust, Visibility

Citation: Anas Aloudat, Katina Michael, "Towards a Conceptual Model of User Acceptance of Location Based Emergency Services", International Journal of Ambient Computing and Intelligence, 5(2), 17-34, April-June 2013.

Using social informatics to study effects of location-based social networking

Using a social informatics framework to study the effects of location-based social networking on relationships between people: A review of literature

Abstract

6c89c-social-networking-informatics.jpg

This paper is predominantly a review of literature on the emerging mobile application area known as location-based social networking. The study applies the social informatics framework to the exploratory question of what effect location based social networking may have on relationships between people. The classification model used in the paper relates previous research on location based services and online social networking together. Specifically the wider study is concerned with literature which identifies the impact of technology on trust with respect to friendship. This paper attempts to draw out the motivations behind using location based social networking applications and the implications this may have on individual privacy and more broadly one's social life. It relies heavily on the domain of social informatics with a view to setting a theoretical underpinning to the shaping between context and information and communication technology design.

Section 1. Introduction

The purpose of this paper is to provide a review of the relevant literature of the effects of location-based social networking (LBSN) on relationships between people. There are three main areas of literature reviewed. The first area is literature related to the domain of social informatics. The purpose of reviewing this literature is to guide the conduct of the wider research study. The second area of literature reviewed is the social informatics based studies on online social networking (OSN), location based services (LBS), and location based social networking (LBSN). The purpose of reviewing the literature on online social networking and location based services is because these technologies precede location based social networking. LBSN is the composite of LBS and OSN and therefore the literature on each of these technologies provides insight into core concepts related to location based social networking. The intersection between LBS, ONS and LBSN also uncovers an area which has been under researched predominantly due to its newness in the field of information and communication technology (ICT). The third area of literature reviewed by this research is the literature on trust and friendship. The purpose of briefly reviewing this literature is to provide an outline of the social theory that forms the background of the wider study. Prior to reviewing the literature a classification model is presented which summarizes the literature in the domain, in addition to providing a roadmap for this paper.

Section 2. Background

Location Based Social Networking (LBSN) applications such as Google Latitude, Loopt and BrightKite enhance our ability to perform social surveillance. These applications enable users to view and share real time location information with their “friends”. LBSN applications offer users the ability to look up the location of another “friend” remotely using a smart phone, desktop or other device, anytime and anywhere. Users invite their friends to participate in LBSN and there is a process of consent that follows. Friends have the ability to alter their privacy settings to allow their location to be monitored by another at differing levels of accuracy (e.g. suburb, pinpoint at the street address level, or manual location entry). Individuals can invite friends they have met in the physical space, friends they have met virtually in an online social network, their parents, their siblings, their extended family, partners, even strangers to join them in an LBSN setting.

With the emergence of this technology it is crucial to consider that “technology alone, even good technology alone is not sufficient to create social or economic value” [1]. Further to not contributing “sufficient” economic or social value, Kling and other scholars have identified that technologies can have negative impacts on society [2]. Consider the case of persons who have befriended each other in the virtual space, only to meet in the physical space and to encounter unforeseen consequences by doing so [3]. As location based social networking technologies are used between what is loosely termed “friends,” they have the potential to impact friendships, which are integral not only to the operation of society but also to the individual's well being [4].

Section 3. Classification Model

The classification model of the literature review expressed in Figure 1 summarizes the current social informatics based scholarship on location based services, online social networking and location based social networking applications. The arrows indicate the researchers view that location based social networking applications are novel in that they have been designed to provide additional functionality for social networking. The classification model also summarizes the scholarship on trust and technology and introduces the social theory of trust and friendship. The purpose of reviewing this literature is first to identify studies relating trust to LBS and OSN, and then to understand how technology has the potential to impact upon human trust. Although it must be stated upfront that the number of studies relating to this particular research question are scarce, given that the first popular LBSN application was launched in the beginning of 2009 [5], with only beta applications existing in August of 2008. Secondly, the purpose of reviewing the literature on trust and friendship is to develop a social theory to inform the research.

Figure 1. Classification Model

In order to logically understand the literature it is organized in a top-down approach. First the paper addresses enquiries in the domain of social informatics. Second the literature on online social networking and location based services is reviewed, providing a background to the types of issues pertinent to location based social networking. The review of the literature specifically on LBSN then follows. Once the gap in current research is presented, previous works on ‘trust and technology’, and ‘trust and friendship’ are presented.

Section 4. Socio-Technical Network Influences

The social implications of technologies have been explored under several different theoretical frameworks, including technological determinism, social shaping of technology, critical information theory and social informatics. This research adopts the approach of social informatics. Thus the overall aim of the research is to engage in a holistic and empirical study of the ‘consequences’ of location based social networking applications. This section provides a definition and outline of social informatics, how and why it has developed and how it can be used as a framework for further research. This section concludes with a justification for the adoption of this particular approach against a backdrop of other possible theories.

4.1. Definition of Social Informatics

Social informatics research focuses upon the relationships between information and communication technologies (ICTs) and the larger social context they exist within [6]. The definition of social informatics provided by the Encyclopedia of Library and Information Sciencedefines Social Informatics as [7]:

“the systematic, interdisciplinary study of the design, uses and consequences of information technologies that takes into account their interaction with institutional and cultural contexts. Thus, it is the study of the social aspects of computers, telecommunications, and related technologies, and examines issues such as the ways that IT shape organizational and social relations, or the ways in which social forces influence the use and design of IT… Social Informatics research strategies are usually based on empirical data… [and] use data to analyze the present and recent past to better understand which social changes are possible, which are plausible and which are most likely in the future.”

One of the key concepts underlying the approach of social informatics is that information and communication technology are not designed in social isolation, that a social context does exist, and it does influence the manner in which ICT is developed, used and ultimately has a social impact [7].

4.2. The Development of Social Informatics

Social informatics research was born from the dissatisfaction with previous information systems research methods that were focused on either exploring the deterministic effects of technology upon society, or society upon technology. These theories are respectively referred to as technological determinism and social shaping of technology.

Technological deterministic research studies focus on the impact of technology upon society. The research approach aims to answer questions such as:

“What would be the impact of computers on organizational behavior if we did X? What would be the changes in social life if we did X? Will computer systems improve or degrade the quality of work?… ‘What will happen, X or Y?’ The answer was, sometimes X, and sometimes Y. There was no simple, direct effect” [8].

Technological determinism has failed to produce satisfactory prediction and this has lead to the formation of social informatics research [9]. Technological determinism was also seen by the proponents of the social shaping of technology, as being only a partial truth, and “oversimplistic” [10].

The social shaping of technology approach proposes that technology is not an autonomous entity as it is shaped by social forces. This is in direct opposition to technological determinism which depicts technology as an “autonomous entity, which develops according to an internal logic and in a direction of its own, and then has determinate impacts on society” [11]. Social shaping of technology studies aim to show that technology is in fact a social product, it does not mold society, but rather society molds it, and this can be seen by investigating the social forces at play in the creation and use of technology [12]. Examples of approaches in the social shaping of technology include the social construction of technology and the actor network theory. These theories focused on the role of either knowledge or actors upon the development of technology. Technological determinism focuses on the impacts of technology, while the social shaping of technology focuses on the context. Social informatics on the other hand “investigates how the influences and nodes in a sociotechnical network shape each other” [13].

Social informatics does not ask deterministic questions ‘What will happen X or Y?’, instead social informatics researchers asks the question 'When will X happen? And Under what Conditions?’ providing a nuanced conceptual understanding of the operation of technology in social life [9]. In contrast to technologic determinism and social shaping of technology theories, the social informatics framework highlights the mutual shaping of technology and society, both molding each other at the same time.

4.3. Examples of Social Informatics Research

Figure 2. Bidirectional Shaping between Context and ICT Design

Social informatics takes a nuanced approach to investigating technologies and explores the bidirectional shaping between context and ICT design, implementation and use [13] (figure 2). This approach, which combines the social aspects and the technical aspects of technology, has been found to be useful for understanding the social shaping and ‘consequences’ of information communication technologies [9]. Examples of social informatics research include the vitality of electronic journals [14], the adoption and use of Lotus Notes within organizations [15], public access to information via the internet [16], and many other studies. Social informatics research also investigates new social phenomenon that materialize when people use technology, for example, the unintended effects of behavioral control in virtual teams [17]. Research falling in this area is perceived as the future direction for social informatics research [9].

4.4. Social Informatics as a Framework

Social informatics is not described as a theory, but as a “large and growing federation of scholars focused on common problems”, with no single theory or theoretical notion being pursued [13]. What social informatics does provide is a framework for conducting research. What follows is a description of the framework, its key elements and distinguishing features.

4.4.1. Key Features of Social Informatics Research

Social informatics research is problem orientated, empirical, theory based and interdisciplinary with a focus on informatics (table 1). In addition there are several key distinguishing features of the framework. First, social informatics does not prescribe a specific methodology although the majority of methods employed by researchers in this field are qualitative methods. Second, social informatics is inclusive of normative, analytical or critical approaches to research. Third, this type of research “investigate[s] how influences and nodes at different levels in the network shape each other” [13], engaging in analysis of the interconnected levels of the social context. Fourth, research in this field can be seen to fall within three broad themes:

  1. ICT uses lead to multiple and sometimes paradoxical effects,

  2. ICT uses shape thought and action in ways that benefit some groups more than others and these differential effects often have moral and ethical consequences and;

  3. a reciprocal relationship exists between ICT design, implementation, use and the context in which these occur [13].

When adopting the framework of social informatics, the main focus of social informatics should not be overshadowed. The research should be focused upon the idea that “ICT are inherently socio-technical, situated and social shaped” [18] and that in order to understand their impacts we need to explore, explain and theorize about their socio-technical contexts [13].

Table 1. Key Features of Social Informatics Research (adapted from [13])

4.5. Justification for Using the Social Informatics Framework

There are two primary justifications for adopting a social informatics approach. First, the goals and achievements of social informatics accords to the researchers' goal and motivation. Second, the holistic method of enquiry adopted by social informatics research provides meaningful data. Social Informatics researchers aim to develop: “reliable knowledge about information technology and social change based on systematic empirical research, in order to inform both public policy issues and professional practice” [8]. This is in accordance with the researchers' goal to identify the credible threats that LBSN pose to friends and society with a view to preventing or minimizing their effect. Social informatics research has also developed an “increased understanding of the design, use, configuration and/or consequences of ICTs so that they are actually workable for people and can fulfill their intended functions” [9]. In essence, this is the primary motivation behind this study: to increase our understanding of location based social networking so that it can be workable and fulfill its intended function in society without causing individuals harm.

The method of enquiry adopted by social informatics researchers is usually based on conducting a holistic and interdisciplinary investigation into the bidirectional relationship between context and ICT design, use and implementation. This study takes into account the social theory surrounding trust and relationships; thus providing meaningful data on the implications of location based social networking upon trust. For Kling, it was the fact that information and communication technologies were increasingly becoming enmeshed in the lives of more and more people, that there was a pressing need to explore the ultimate social consequences of the ensuing changes [8]. Kling considered that studying new and emerging applications early in the process of diffusion granted significant opportunities to shape the forms and uses of new technologies.

4.6. Alternative Theories and Approaches to the Study of the Social Implications of Technology

Two alternative approaches to social informatics were discussed in section 4.2, i.e., technological determinism and the social shaping of technology. A third possible theory that was considered was critical social theory (founded by Jürgen Habermas). Critical social theory has four distinct attributes: (1) it is sensitive to lifeworlds of the organizational actors and is oriented to interpreting and mapping the meanings of their actions from their perspectives, (2) adopts pluralistic methods, (3) does not separate the subjects of inquiry from their context and (4) recognizes that the context is not only important to meaning construction, but to social activity as well [19]. Thus, we can say, that critical social theory is similar to social informatics in three main ways: (1) both approaches are sensitive to the context surrounding the subject of enquiry, (2) both focus on the inter-relationship between context and subject, and (3) both approaches employ pluralistic methods. However, the main focus of the two approaches is markedly different.

Critical information theory focuses on “questioning the conventional wisdom of prevailing schools of thought and institutional practices with a primary focus on issues related to justice and power” [20]. In applying this kind of approach to ICT we would be aiming to “discover and expose attempts to design and (mis)use IS to deceive, manipulate, exploit, dominate and disempower people” [21]. This is not the aim of the research problem presented here- while admittedly location based social networking can cause harm if misused (e.g. stalking by x-partners), it can also act to be incredibly beneficial (e.g. in a family travel holiday in a foreign country). Thus, the aim of the research is to understand the positive and negative implications of the use of location based social networking in society, not just to look at issues of justice and power.

The following section provides an overview of the key literature on the use, design, implementation, context and implications of online social networking, location based services, and location based social networking.

Section 5. Online Social Networking Sites

Current studies on online social networking sites use varied methods involving case studies, surveys, interviews and observations to investigate the use, implications, design and context of the emerging application. The literature on OSN falls into three broad areas of study: (1) purpose, motivation and patterns of use, (2) effect on interpersonal relationships, and (3) threats to privacy, trust and security.

5.1. Purpose, Motivation and Patterns of Use

These studies on online social networking outline the purpose for which OSN is used, the motivation behind an individual's use of OSN, and how users go about the adoption of OSN applications.

5.1.1. Purpose of Online Social Networking

The purpose of OSN has been identified as the public articulation of individual social connections [22], the creation of an information ground [23] or a means of satisfying “our human tendencies towards togetherness” [24]. Boyd's study on Friendster users, revealed that OSN “reshaped how groups of people verbally identify relationships and solidified the importance of creative play in social interactions” [22]. Boyd identified the value of networks, how users presented themselves on Friendster, who users connected with from exiting friends to “hook-ups” to “familiar strangers,” and it highlighted the dilemma caused by fakesters in the network.

Counts and Fisher's study explored OSN exposing the “types and usefulness of information shared in everyday life, the way the system fits into participants communication and social “ecosystem” and the ways in which the system functions as an information ground” [23]. Other than just a source of information, OSN also functions to provide “a logical extension of our human tendencies towards togetherness” [24]. Weaver and Morrison perform case studies on four social networking sites (mySpace, Facebook, Wikipedia and YouTube) to explore the range of socialization that can occur revealing the core purpose of connecting to people.

5.1.2. Motivation Behind the Use of Online Social Networking

Lampe, Ellison and Steinfield have conducted two major survey studies on the use of OSN. The first study was in 2006, and the second was in 2008. The purpose of the first study was to answer the question - “Are Facebook members using the site to make new online connections, or to support already existing offline connections?” The results revealed that Facebook users are primarily interested in increasing “their awareness of those in their offline community” [25]. The second study incorporated three surveys and interviews in order to explore whether the use, perception of audience and attitudes of users of Facebook changed over time with the introduction of new features to Facebook. The results again revealed that the primary use of Facebook was to maintain existing offline connections, in order to: keep in touch with friends, learn more about existing classmates and people that users have met socially offline [26]. Both studies were conducted upon undergraduate university populations.

Joinson [27] performed a use and motivation study on a random sample of Facebook users, not limited to campus-based populations, which supported the conclusions of both Lampe, Ellison and Steinfield studies. Furthermore the study by Joinson probed further identifying seven unique uses and gratifications of online social networks, including social connection, shared identities, content, social investigation, social network surfing and status updating, and identifying that different uses and gratifications relate differentially to patterns of usage [27].

5.1.3. Patterns of Use of Online Social Networking

Other studies of use of online social networking have looked at how the information provided by social networking sites can be used to understand patterns of use. Hancock, Toma and Fenner [28]explore how people use information available on social networking sites to initiate relationships. They asked participants to befriend partners via an instant messaging conversation by using profile information readily available on Facebook. This use of asymmetric information revealed that the information helped in linking persons together, but only in 2 out of 133 scenarios did the users realize that information had been gained from their Facebook profile, instead of the real-time instant messaging conversation(s) they had had with the friend. This study highlighted the rich source of information about the self which is available online, as well as the unintended consequences of others strategically plotting to use that information for their own relational goals.

Online social networking researchers have also explored patterns of use among different groups of people and communities. Ahn and Han [29] investigated the typological characteristics of online networking services. Chapman and Lahav [30] conducted an ethnographic interview studying the cross-cultural differences in usage patterns of OSN in multiple cultures. Results from the interviews identified three dimensions of cultural difference for typical social networking behaviors: users' goals, typical pattern of self expression and common interaction behaviors. The study was limited to the interviews with participants from the United States, France, China and South Korea, and therefore requires future work to evaluate the presented results.

Other studies have explored the usage among different age groups. Arjan, Pfeil and Zaphiris [31]explored users MySpace friend networks with webcrawlers to compare teenage (13–19) networks with those of older people (60+). The findings of the study showed that teenage users had larger networks with more users of the same age than older users. Furthermore when representing themselves online teenagers use more self referencing, negative emotions and cognitive works than older people. The limitation of this study is the small sample size and limited frame of reference – that is the differences between teenagers and older people without reference to other intermediate age groups. A third study by Schrammel, Köffel and Tscheligi [32] surveyed users of various online communities to explore the different information disclosure behavior in the different types of online communities. They identified that users disclose more information in business and social contexts, with students being more freehanded with information than employed people, and females being more cautious than males. Studies relating to the use of OSN have also explored its potential application to other contexts including the workplace [33][34]; student learning [35], citizen involvement [36] and connecting women in information technology [37].

5.2. The Effect of Online Social Networking on Interpersonal Relationships

Online social networking is used in the context of being social, creating connections with users and expanding networks [38]. The implication of using OSN to create or maintain relationships has been explored by several researchers highlighting the nature of intimate online relationships and social interactions as well as the benefits and detriments of the use of OSN upon relationships. Boyd's study concentrated on intimacy and trust within the OSN site Friendster. He highlighted that intimate computing hinges upon issues surrounding trust, trust in the technology, and ultimately trust in the other users to operate by the same set or rules [39]. Dwyer [40] has presented a preliminary framework modeling how attitudes towards privacy and impression management translate into social interactions within MySpace. Other issues that have been explored in the literature include whether interaction between users, flow from the declaration of friends and whether users interact evenly or lopsidedly with friends. These questions were explored by Chun et al, in a quantitative case study of the OSN site Cyworld, reporting that there was a high degree of reciprocity among users [41].

The benefits and detriments of OSN upon interpersonal relationships have not been extensively explored. A survey of undergraduate university students conducted by Ellison, Steinfield and Lampe [42] identified that using Facebook benefits the maintenance and growth of social capital among “friends” and also improves psychological well being. However, although OSN sites reinforce peer communication, Subrahmanyam and Greenfield [43] point out that this may be at the expense of communication within the family, expressing the need for further research into the affects of OSN upon real world communications and relationships.

5.3. Implications of Use- Privacy, Trust and Security

5.3.1. Privacy

Privacy in online social networking sites has received significant attention, with researchers exploring patterns of information revelation and implications upon privacy [44], the use of OSN policies to ensure privacy [45], differences in perceptions of privacy across different OSN [46], the privacy risks presented by OSN [47], mechanisms to enhance privacy on OSN [48], user strategies to manage privacy [49], and the notion of privacy and privacy risk in OSN [50].

The work of Levin and others at Ryerson University (the Ryerson Study) provides the largest survey on usage, attitudes and perceptions of risk of online social networking sites [50]. The design of the survey incorporated quantitative questions, scenarios and short answer questions to understand the level of risk and responsibility one feels when revealing information online. This study identified that young Canadians have a unique perception of network privacy “according to which personal information is considered private as long as it is limited to their social network” [50]. A further contribution of this study, along with other privacy studies [44][46] is the implication of the use of online social networking sites upon trust.

5.3.2. Trust

There are very few studies that explore the concept of trust in online social networking. The majority of studies which do look at trust are focused upon algorithms [51] or frameworks [52] that provide users of OSN with trust ratings. Other scant studies have mentioned or examined online social networking sites in terms of their impact upon trust in relationships. Gross and Acquisti [44]have mentioned that: “trust in and within online social networks may be assigned differently and have a different meaning than in their offline counterparts…[and that] trust may decrease within an online social network”. However they did not investigate this aspect of OSN further. There are three studies which have investigated the impact of OSN upon trust. The first by Dwyer, Hiltz and Passerini [46], compares perceptions of trust and privacy between different OSN applications. The second study, conducted by Ryerson University, identifies the potential for OSN to impact upon trust, and the third study, by Gambi and Reader, is currently ongoing and aims to determine whether trust is important in online friendships and how it is developed.

Dwyer, Hiltz and Passerini [46] compared perceptions of trust and privacy concern between MySpace and Facebook. Trust was measured with the following two quantitative questions; “I feel that my personal information is protected by [social networking sites]” and “I believe most of the profiles I view on [social networking sites] are exaggerated to make the person look more appealing”. The outcome of the study was focused upon trust in the users and online social network itself, but it did not shed light upon the effect of OSN upon trust in relationships.

The Ryerson study provides some exploration into the impact of online social networking sites upon trust in relationships, by presenting scenarios where users had experienced a loss of trust with other members of the site. The participants were then asked whether they had experienced or know of someone who had experienced such a scenario. The first scenario presented a user who went out partying and photographs were taken of the occasion and displayed on Facebook, resulting in the loss of trust by the family. Sixty-four percent of respondents either experienced this scenario directly or indirectly or heard of it happening to someone else. The second scenario that focused on trust involved a comment being posted upon a user's wall, indicating that that individual had been involved in shoplifting, and that no matter what the user claimed everyone still believed that he/she was a shoplifter. In this scenario, seventy-six percent of respondents reported that they had not heard of this occurring. The Ryerson study therefore presented a glimpse into the potential effect of use of online social networking sites upon trust. Another snapshot is provided by Gambi and Reader [53] who performed an online questionnaire with online social networking users to determine whether trust was important in online friendships, and how trust is developed online. Despite the low number of studies in the area of trust and OSN, it is clear from the currency of the three studies that this is an emerging area of research.

5.3.3. Security

Studies in online social networking have explored the impact of OSN on the security of user information and identity. A recent study by Bilge, Strufe, Balzarotti and Kirda [54] identifies the ease with which a potential attacker could perform identity theft attacks upon OSN and suggests improvements in OSN security.

Section 6. Location Based Services

The focus of the literature on location based services, as with social networking, does not surround the technological aspects of design but the use and implications from a social informatics perspective. In this vein the literature reviewed identified the different contexts of use of LBS, the implications of use including trust, control, privacy and security.

6.1. Context of Use of Location Based Services

The literature identifies both current and future applications of LBS to track and monitor human subjects. These applications include employee monitoring [55], government surveillance [56], law enforcement [57], source of evidence [58], patient monitoring [59], locating family members for safety [60][61][62], locating students at school [63], identifying kidnapped victims [60], and socializing with friends [64][65]. The following section details the literature conducted on humancentric LBS in terms of their social implications.

6.2. Implications of Using Location Based Services

Michael, Fusco and Michael's research note on the ethics of LBS provides a concise summary of the literature on the socio-ethical implications of LBS available prior to 2008. The research note identifies trust, control, security and privacy [66] as the four implications of LBS. The literature pertaining to each of these implications will now be described.

6.2.1. Trust

The literature on trust and location based services has predominantly used scenarios [67], theory based discussion of workplace practices [68], and addressed consumer trust with respect to LBS [69]. To the researcher's knowledge, the investigation of trust and LBS is limited to these works.

6.2.2. Control

Dobson and Fisher provide an account of the concept of “geoslavery”, which is defined as “the practice in which one entity, the master, coercively or surreptitiously monitors and exerts control over the physical location of another individual, the slave” [70]. While Dobson and Fisher provide a theoretical account of the potential for “geoslavery” and the human rights issues which accompany it, Troshynski, Lee and Dourish examine the application of “geoslavery” upon paroled sex offenders who have been tracked using a LBS device [57].

Troshynski, Lee and Dourish's work draws upon two focus groups of parole sex offenders to explore the ways that LBS frame people's everyday experience of space. The findings from the focus groups draw out the notion of accountabilities of presence. Troshynski et al define accountabilities of presence as the notion that “[l]ocations are not merely disclosed, rather users are held accountable for their presence and absence at certain time and places” [57]. This presence need not be their actual physical location but the location that is disclosed to the observer. For instance, the parole sex offenders were “primarily concerned with understanding how their movement appear to their parole officers” [57]. This concept of being held to account is a mechanism of enforcing control.

A handful of studies have made mention of the parallel between LBS and Michel Foucault's Panopticon design for prisons [71][57][72]. The Panopticon prison was designed to be round so that the guards could observe the prisoners from the centre without the prisoners knowing whether they were being observed or not. Foucault argued “that the omni-present threat of surveillance renders the actual exercise of power (or violence) unnecessary; the mechanisms of pervasive surveillance induce discipline and docility in those who are surveilled” [57]. LBS represent a modern form of the Panopticon prison, exerting implicit control through the ability to observe.

6.2.3. Security

LBS can be used to provide security, such as law enforcement in order to make “police more efficient in the war against crime” [73] and also for border security [63]. However they can also present a threat to security [74].

6.2.4. Privacy

LBS pose a threat to privacy in the way that information is collected, stored, used and disclosed [75][74][76]. The threat to privacy is further exacerbated by the aggregation and centralization of personal information enabling location information to be combined with other personal information [77]. However while privacy is important, a hypothetical study requiring users to “imagine” the existence of a LBS, provided evidence to show that users were “not overly concerned about their privacy” [78]. Two other studies showed that in situations of emergency, individuals are more willing to forgo some of their privacy [60][79].

Section 7. Location Based Social Networking

The current literature on location based social networking explores users' willingness and motivations for disclosing location information and presents several user studies, which draw out different findings on the implications of using LBSN.

7.1. Disclosure of Location Information

Grandhi, Jones and Karam [80] conducted a survey to gauge attitudes towards disclosure of location information, and use of LBSN applications. The findings from the short survey indicated that there was a general interest in LBSN services. The majority of respondents stated that they would disclose their personal location data, that demographics and geotemporal routines did matter, and finally that social relationships are important in predicting when or with whom individuals want to share personal location data.

7.2. LBSN User Studies

7.2.1. LBSN Studies Based on Perceptions and Closed Environments

Several user studies have been conducted on location based social networking [81]. One of the earliest studies to be conducted involved a two phased study comparing perceived privacy concerns with actual privacy concerns within a closed LBS environment [82]. Barkhuus found that although users were concerned about their location privacy in general, when confronted with a closed environment the concern diminished. Another user study observed the configuration of privacy settings on a work-related location based service [83]. The study found that grouping permissions provided a convenient balance between privacy and control. Moving away solely from the concept of privacy, Consolvo and Smith [84] conducted a three phased study. First they explored whether social networking users would use location-enhanced computing, second they recorded the response of users to in-situ hypothetical requests for information, and thirdly requested participants to reflect upon phase one and two. Some of the captured results included: what participants were willing to disclose, the relationship between participant and requestor, the effect of where participants were located, the activity or mode, privacy classifications, what people want to know about another's location, and privacy and security concerns. The limitation of the research, and prior research on LBSN technologies was the hypothetical nature of the research, or that the research took place within a controlled environment. The following studies employed the use of actual or tailored LBSN.

7.2.2. Semi-Automated and Customizable LBSN Studies

Brown and Taylor [61] implemented the Whereabouts Clock, a location based service which displayed the location of family members on a clock face with four values. At any given point of time, an individual had the status of being at home, at work, at school, or elsewhere. This study revealed that LBSN within the family context could help co-ordination and communication and provide reassurance and connectedness, although it also caused some unnecessary anxiety. Privacy was found not to be an issue among family members using the Whereabouts Clock. The LBSN technology used in this study was more sophisticated than prior studies but it was rather limited in geographic granularity.

Humphreys performed a year long qualitative field study on the mobile social network known as Dodgeball which allowed users to ‘check in’ at a location and then that location was broadcasted to people on their given network. The outcomes of this study revealed patterns of use of LBSN, the creation of a “third space” by LBSN, and the resultant social molecularization caused by Dodgeball use [85]. The limitation of this study is again in the technology employed, the location information was not automated or real-time as Dodgeball required the user to consciously provide manual location updates.

Barkhuus and Brown [86] conducted a trial using Connecto, in order to investigate the emergent practices around LBSN. Connecto allowed users to tag physical locations and then the phone would automatically change the users displayed location to represent the tagged location. This provided a closer simulation of real-time automated LBSN. The outcomes of this study demonstrated that users could use Connecto to establish a repartee and were self-conscious about the location they disclosed. By publishing their location, the users were found to engage in ongoing story-telling with their friends, via a process of mutual monitoring. This act was seen as a “part of friendship relations” and added to an “ongoing relationship state.” There was also the additional expectation that users had to “have seen each others' location or else risk falling ‘out of touch’ with the group” [86].

7.2.3. Real-time LBSN Studies

Brown LBSN studies published after the 2008 calendar year use methods that take advantage of sophisticated real-time automated LBSN applications. Tsai and Kelley [87] developed the Locyoution Facebook application which was used to automatically locate user laptops using wireless fidelity (Wi-Fi) access points leveraging the SkyHook technology. The aim of the study was to investigate how important feedback is for managing personal privacy in ubiquitous systems. Participants were divided into two groups; one group received no information about who had requested their location while the other group was able to view their location disclosure history. The four major findings of the study were that (1) providing feedback to users makes them more comfortable about sharing location (2) feedback is a desired feature and makes users more willing to share location information, (3) time and group based rules are effective for managing privacy, and (4) peers and technical savviness have a significant impact upon use.

Vihavaninen and Oulasvirta [88] performed three field trials of Jaiku, a mobile microblogging service that automates disclosure and diffusion of location information. The focus of the field trials was on investigating the use, user response and user understanding of automation. The results of this study revealed that automation caused issues related to control, understanding, emergent practices and privacy. This study is significant as it is one of the first studies to investigate the implication of automated location disclosure upon user perceptions. The study however does not investigate the implications of the use of automated LBSN upon social relationships.

An ethnographic study by Page and Kobsa explored people's attitudes towards and adoption of Google Latitude, a real-time and automated LBSN. The focus of this study was upon “how participants perceive[d] Latitude to be conceptually situated within the ecology of social networking and communication technologies” [65], based upon technology adoption, social norms, audience management, information filtering and benefits. This study while innovative, presented preliminary results based upon 12 interviews of users and non-users of Latitude.

The user studies conducted upon LBSN have matured over time, with more recent studies employing sophisticated LBSN which provide automated real-time location disclosure. These studies provide insight into user perceptions and use of LBSN however issues of control, security or trust have been neglected, although they are becoming increasingly pertinent to both location based services and online social networking technologies. Furthermore there has been no more than a cursory investigation into the implications of using LBSN upon social relationships.

Section 8. Towards a Study Investigating the Social Implications of LBSN on Relationships

Location based social networking is an emerging and evolving technology with current applications still very much in their infancy. Previous works reflect the state of the technology in late 2008, utilizing hypothetical scenario methods or unsophisticated non-real time incarnations of LSBN. While new research has begun to utilize more sophisticated mobile software applications such as Google Latitude, a sober full-length study is absent from the literature. The need for such a study however is escalating as more and more LBSN applications proliferate, with more and more mobile Internet users being aware of the existence of LBSN and/or adopting the technology. What remains to be explored in the area of LBSN are the concepts of control, security and trust, and the effect of these emerging technologies upon social relationships.

In the months between February and May 2010, the number of fully-fledged LBSN applications more than doubled from fifty to over one hundred [89]. This is a substantial increase when one considers that in late 2009 there were about 30 functional LBSN applications, but only about 8 that people would generally say were usable, reliable, or worth using. Today, innovative developers are simply piggybacking on top of the Google platform and offering niche LBSN applications targeted at dating services, adventure sports, hobbyists, expertise and qualifications, and other demographic profiling categories. Table 2 shows a list of over 100 LBSN applications. Although this is not an exhaustive list, one can only imagine the potential for such services, and the unforeseen consequences (positive and negative) that may ensue from their widespread adoption.

TABLE 2. A List of LBSN Applications [89]

8.1. Trust and Technology

Many studies concerning trust and technology focus upon trust in technology. Trust is an important aspect of human interaction, including human interaction with technology, however that interaction is a two way event, and only minimal research has been undertaken to observe the impact of technology upon trust. Two studies have been found which focus upon the effect of technology upon trust.

Vasalou, Hopfensiz and Pitt [90] examined how trust can break down in online interactions. The ways trust can break down can occur from intentional acts but also from unintentional acts or exceptional acts. The paper titled: “In praise of forgiveness: ways for repairing trust breakdowns in one-off online interactions” also proposes methods for fairly assessing the kind of offender to determine whether the offender committed an intentional act that resulted in the trust breakdown or whether the act was unintentional or exceptional.

The second study that looked at the effect of technology on trust was conducted by Piccoli and Ives [17], and explored trust and the unintended effects of behavior control in virtual teams. This study was based upon observations of the conduct of virtual teams. The findings showed that behavior control mechanisms increase vigilance and make instances when individuals perceive team members to have failed to uphold their obligations salient [17].

8.2. Social Theory

Social informatics studies incorporate a social theory into the study of the technology. This research will incorporate the theory of trust and its importance within friendships.

8.2.1. Trust

Trust is defined as the willingness for an individual to be vulnerable where there is the presence of risk and dependence or reliance between the parities [91]. There are two important things to note about this definition of trust. First that trust is not a behavior or choice but a state of mind where the individual is willing to make themselves vulnerable. Second, that trust is not a control mechanism but a substitute for control [92], although the relationship between trust and control is more complex than this [93]. In order to understand trust more fully it is important to understand the bases upon which trust is formed and the dynamic nature of trust.

Trust is formed upon three bases (1) cognitive, (2) emotional or relational and (3) behavioral [94]. The cognitive basis of trust refers to the “evidence of trustworthiness” or “good reason” to trust. It is not that evidence or knowledge amounts to trust but that “when social actors no longer need or want any further evidence or rational reasons for their confidence in the objects' of trust” and are then able to make the cognitive “leap” into trust [94]. The emotional basis of trust refers to the emotional bond between parties which provides the interpersonal platform for trust. Finally, behavioral trust is the behavioral enactment of trust. To illustrate behavioral trust consider two individuals A and B and A trusts B with task X. If B performs task X then the trust that A has in B will be confirmed, therefore there is the behavioral enactment of trust. In the same way acting incongruently can reduce the trust. The behavioral basis of trust feeds also into the fact that trust is a dynamic concept: “ a trustor takes a risk in a trustee that leads to a positive outcome, the trustor's perceptions of the trustee are enhanced. Likewise, perceptions of the trustee will decline when trust leads to unfavorable conclusions” [92].

8.2.2. Trust and Friendship

Trust is a vitally important element of friendship. Trust secures the “stability of social relationships” [4]. Friendships are described as being “based on trust, reciprocity and equality… which is an important source of solidarity and self-esteem” [4]. And trust is described as a timelessly essential factor of friendships: “the importance of mutual commitment, loyalty and trust between friends will increase and may become an essential element of modern friendship regardless of other changes, which may be expected as the nature of social communication and contracts is transformed” [4].

Section 9. Conclusion

Online social networking technologies have already transformed the way in which people interact in the virtual space. Generally, younger people are more inclined to interact via features on online social networks than with traditional forms of online communications such as electronic mail. The ability to look up a “friends” location using a location based social network, now grants individuals even greater freedom to interact with one another in an almost omniscient manner. Not only do we now know the ‘who’ (identity) of a person, but we also know the ‘whereabouts’ (location) of a person, and from the profile data available on the online social network we also know something more about one's ‘context.’ If used appropriately these new applications have the potential to strengthen individual relationships and provide an unforeseen level of convenience between “friends”, including partners, siblings, parent-child, employer-employee relationships. However, there is also the danger that these technologies can be misused and threaten fundamental threads that society is built upon, such as trust. This literature review has attempted to establish what previous research has already been conducted in the area of LBSN, and what has yet to be done. Our future work will focus on participant realtime automated LBSN fieldwork, with a view to understanding the impact of LBSN on trust between people, and the broader social implications of this emerging technology upon society.

References

1. R. Kling, "What is social informatics and why does it matter?", The Information Society, vol. 23, pp. 205-220, 2007.

2. K. Robert, K. Sara, "Internet paradox revisited", Journal of Social Issues, vol. 58, pp. 49-74, 2002.

3. A. Drummond, Teenager missing after Facebook meeting, 14 May 2010.

4. B. Misztal, Trust in Modern Societies - The Serach for the bases of Social Order, Cambridge:Blackwell Publishers, 1998.

5See where your friends are with Google Latitude, February 2009.

6. R. Kling, H. Rosenbaum, "Social informatics in information science: An introduction", Journal of the American Society for Information Science, vol. 49, pp. 1047-1052, 1998.

7. R. Kling, "Social Informatics", Encyclopedia of Library and Information Science, pp. 2656-2661, 2003.

8. R. Kling, "Learning About Information Technologies and Social Change: The Contribution of Social Informatics", The Information Society, vol. 16, pp. 217-232, 2000.

9. R. Kling, "Social Informatics: A New Perspective on Social Research about Information and Communication Technologies", Prometheus, vol. 18, pp. 245-264, 2000.

10. D. Mackenzie, D. Mackenzie, "Introductory Essay: The Social Shaping of Technology" in The Social Shaping of Technology, Philadelphia:Open University Press, pp. 2-27, 1999.

11. S. Russell, R. Williams, K. Sorensen, R. Williams, "Social Shaping of Technology: Frameworks Findings and Implications for Policy With Glossary of Social Shaping Concepts" in Shaping Technology Guiding Policy: Concepts Spaces and Tools, Chetenham:Elgar, pp. 37-131, 2002.

12. R. Williams, D. Edge, "The Social Shaping of Technology", Research Policy, vol. 25, pp. 856-899, 1996.

13. S. Sawyer, K. Eschenfelder, "Social informatics: Perspectives examples and trends", Annual Review of Information Science and Technology, vol. 36, pp. 427-465, 2002.

14. R. Kling, L. Covi, "Electronic journals and legitimate media in the systems of scholarly communication", The Information Society, vol. 11, pp. 261-271, 1995. 

15. W. Orlikowski, "Learning from notes: Organizational issues in GroupWare implementation", The Information Society, vol. 9, pp. 237-250, 1993.

16. B. Kahin, J. Keller, Public Access to the Internet, Cambridge: MIT Press, 1995.

17. G. Piccoli, B. Ives, "Trust and the Unintended Effects of Behavior Control in Virtual Teams", MIS Quarterly, vol. 27, pp. 365-395, 2003.

18. S. Sawyer, A. Tapia, "From Findings to Theories: Institutionalizing Social Informatics", The Information Society, vol. 23, pp. 263-275, 2007.

19. O. K. Ngwenyama, A. S. Lee, "Communication Richness in Electronic Mail: Critical Social Theory and the Contextuality of Meaning", MIS Quarterly, vol. 21, pp. 145-167, 1997.

20. S. Hansen, N. Berente, "Wikipedia Critical Social Theory and the Possibility of Rational Discourse", The Information Society, vol. 25, pp. 38-59, 2009.

21. D. Cecez-Kecmanovic, "Doing critical IS research: the question of methodology" in Qualitative Research in Information Systems: Issues and Trends, Hershey:Idea Group Publishing, pp. 141-163, 2001.

22. D. M. Boyd, "Friendster and publicly articulated social networking" in CHI '04 on Human Factors in Computing Systems, Vienna, Australia:, 2004.

23. S. Counts, K. E. Fisher, "Mobile Social Networking: An Information Grounds Perspective", Proceedings of the 41st Annual Hawaii International Conference on System Sciences, 2008.

24. A. C. Weaver, B. B. Morrison, "Social Networking", Computer, vol. 41, pp. 97-100, 2008.

25. C. Lampe, N. Ellison, C. Steinfield, "A face(book) in the crowd: social Searching vs. social browsing", Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, 2006.

26. C. Lampe, N. B. Ellison, C. Steinfield, "Changes in use and perception of facebook", Proceedings of the ACM 2008 conference on Computer supported cooperative work, 2008.

27. A. N. Joinson, Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, 2008.

28. J. T. Hancock, C. L. Toma, "I know something you don't: the use of asymmetric personal information for interpersonal advantage", Proceedings of the ACM 2008 conference on Computer supported cooperative work, 2008.

29. Y.-Y. Ahn, S. Han, Proceedings of the 16th international conference on World Wide Web, 2007.

30. C. N. Chapman, M. Lahav, "International ethnographic observation of social networking sites" in CHI '08 extended abstracts on Human factors in computing systems, Florence, Italy:, 2008.

31. R. Arjan, U. Pfeil, P. Zaphiris, "Age differences in online social networking", Conference on Human Factors in Computing Systems, 2008.

32. J. Schrammel, C. Kaffel, Tscheligi, "How much do you tell?: information disclosure behavior indifferent types of online communities", Proceedings of the fourth international conference on Communities and technologies, 2009.

33. J. DiMicco, D. R. Millen, "Motivations for social networking at work", Proceedings of the ACM 2008 conference on Computer supported cooperative work, 2008.

34. M. M. Skeels, J. Grudin, "When social networks cross boundaries: a case study of workplace use of facebook and linkedin", Proceedings of the ACM 2009 international conference on Supporting group work, 2009.

35. I. Liccardi, A. Ounnas, "The role of social networks in students' learning experiences" in Working group reports on ITiCSE on Innovation and technology in computer science education, Dundee, Scotland:, 2007.

36. S. Bystein, J. Rose, "The Role of Social Networking Services in eParticipation", Proceedings of the 1st International Conference on Electronic Participation, 2009.

37. R. M. Beth, M. C. John, "wConnect: a facebook-based developmental learning community to support women in information technology", Proceedings of the fourth international conference on Communities and technologies, 2009.

38. J. Donath, D. Boyd, "Public displays of connection", BT Technology Journal, vol. 22, pp. 71-82, 2004.

39. D. Boyd, "Reflections on Friendster Trust and Intimacy", Ubiquitous Computing Workshop application for the Intimate Ubiquitous Computing Workshop, 2003.

40. C. Dwyer, "Digital Relationships in the “MySpace” Generation: Results From a Qualitative Study", Proceedings of the 40th Annual Hawaii International Conference on System Sciences, 2007.

41. H. Chun, H. Kwak, "Comparison of online social relations in volume vs interaction: a case study of cyworld", Proceedings of the 8th ACM SIGCOMM conference on Internet measurement, 2008.

42. N. Ellison, C. Steinfield, C. Lampe, "The Benefits of Facebook “Friends:” Social Capital and College Students Use of Online Social Network Sites", Journal of Computer-Mediated Communication, vol. 12, pp. 1143-1168, 2007.

43. K. Subrahmanyam, P. Greenfield, "Online communication and adolescent relationships", The Future of Children, vol. 18, pp. 119-128, 2008.

44. R. Gross, A. Acquisti, "Information Revelation and Privacy in Online Social Networks", Workshop on Privacy in Electronic Society, 2005.

45. J. Snyder, D. Carpenter, " MySpace.com - A Social Networking Site and Social Contract Theory ", Information Systems Education Journal, vol. 5, pp. 3-11, 2007.

46. C. Dwyer, S. Hiltz, Passerini, "Trust and privacy concern within social networking sites: A comparison of Facebook and MySpace", Proceedings of the Thirteenth Americas Conference on Information Systems (AMCIS), 2007.

47. D. Rosenblum, "What Anyone Can Know: The Privacy Risks of Social Networking Sites", IEEE Security & Privacy, vol. 5, pp. 40-49, 2007.

48. M. Mohammad, C. O. Paul, "Privacy-enhanced sharing of personal content on the web", Proceeding of the 17th international conference on World Wide Web, 2008.

49. S. Katherine, L. H. Richter, "Strategies and struggles with privacy in an online social networking community", Proceedings of the 22nd British HCI Group Annual Conference on HCI 2008: People and Computers XXII: Culture Creativity Interaction, vol. 1, 2008.

50. A. Levin, M. Foster, The Next Digital Divide: Online Social Network Privacy, 2008.

51. J. Golbeck, U. Kuter, "The Ripple Effect: Change in Trust and Its Impact Over a Social Network", Computing with Social Trust, pp. 169-181, 2009.

52. C. James, L. Ling, "Socialtrust: tamper-resilient trust establishment in online communities", Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries, 2008.

53. S. Gambi, W. Reader, "The Development of Trust in Close Friendships Formed within Social Network Sites", Proceedings of the WebSci'09: Society On-Line, 2009.

54. L. Bilge, T. Strufe, Balzarotti, Kirda, "All your contacts are belong to us: automated identity theft attacks on social networks", Proceedings of the 18th international conference on World wide web, 2009.

 55. G. Kaupins, R. Minch, "Legal and ethical implications of employee location monitoring", International Journal of Technology and Human Interaction, vol. 2, pp. 16-20, 2006.

56. G. D. Smith, "Private eyes are watching you: with the implementation of the E-911 mandate who will watch every move you make? (Telecommunications Act of 1996: Ten Years Later Symposium)", Federal Communications Law Journal, vol. 58, pp. 705-721, 2006.

57. E. Troshynski, C. Lee, Dourish, "Accountabilities of presence: reframing location-based systems", Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, 2008.

58. C. Strawn, "Expanding The Potential for GPS Evidence Acquisition", Small Scale Digital Device Forensics Journal, vol. 3, pp. 1-12, 2009.

59. Y. Xiao, B. Shen, "Security and Privacy in RFID and application in telemedicine", IEEE Communications Magazine, vol. 44, pp. 64-72, 2006.

60. A. Masters, K. Michael, "Lend me your arms: The use and implications of humancentric RFID", Electronic Commerce Research Applications, vol. 6, pp. 29-39, 2007.

61. B. Brown, A. Taylor, "Locating Family Values: A Field Trial of the {Whereabouts} Clock", UbiComp 2007, 2007.

62. L.-D. Chou, N.-H. Lai, Y.-W. Chen, Y.-J. Chang, L.-F. Huang, W.-L. Chiang, H.-Y. Chiu, J.-Y. Yang, "Management of mobile social network services for families with Developmental Delay Children", 10th International Conference on e-health Networking Applications and Services: HealthCom 2008, 2008.

63. D. J. Glasser, K. W. Goodman, "Chips tags and scanners: Ethical challenges for radio frequency identification", Ethics and Information Technology, vol. 9, pp. 101-109, 2007.

64. L. Nan, C. Guanling, "Analysis of a Location-Based Social Network", International Conference on Computational Science and Engineering, 2009.

65. X. Page, A. Kobsa, "The Circles of Latitude: Adoption and Usage of Location Tracking in Online Social Networking", International Conference on Computational Science and Engineering, 2009.

66. M. G. Michael, S. J. Fusco, K. Michael, "A Research Note on Ethics in the Emerging Age of überveillance", Computer Communications, vol. 31, pp. 1192-1199, 2008.

67. L. Perusco, K. Michael, "Humancentric applications of precise location based services", International Conference on eBusiness Engineering, 2005.

68. J. Weckert, "Trust and monitoring in the workplace", IEEE Symposium on Technology and Society, 2000.

69. G. Borriello, "RFID: tagging the world", Communications of the ACM, vol. 48, pp. 34-37, 2005.

70. J. E. Dobson, P. F. Fisher, "Geoslavery", IEEE Technology and Society Magazine, vol. 22, pp. 47-52, 2003.

71. P. Joore, "Social aspects of location-monitoring systems: the case of Guide Me and of My-SOS", Social Science Information, vol. 47, pp. 253-274, 2008.

72. J. E. Dobson, P. F. Fisher, "The Panopticon's Changing Geography", The Geographical Review, vol. 97, pp. 307-323, 2007.

73. E. M. Dowdell, "You are here! Mapping the boundaries of the Fourth Amendment with GPS technology", Rutgers Computer and Technology Law Journal, vol. 32, pp. 109-131, 2005.

74. V. Lockton, R. Rosenberg, "RFID: The Next Serious Threat to Privacy", Ethics and Information Technology, vol. 7, pp. 221-231, 2005.

75. S. L. Garfinkel, A. Juels, "RFID Privacy: An Overview of Problems and Proposed Solutions", IEEE Security and Privacy, pp. 34-43, 2005.

76. M. Gadzheva, "Privacy concerns pertaining to location-based services", International Journal of Intercultural Information Management, vol. 1, pp. 49, 2007.

77. J. L. Wang, M. Loui, "Privacy and ethical issues in location-based tracking systems", Proceedings of the IEEE Symposium on Technology and Society, 2009.

78. L. Barkhuus, A. Dey, "Location-Based Services for Mobile Telephony: a study of user's privacy concerns", Proceedings of the INTERACT 9th IFIP TC13 International Conference on Human-Computer Interaction, 2003.

79. A. Aloudat, K. Michael, R. Abbas, "Location-Based Services for Emergency Management: A Multi-Stakeholder Perspective", Eighth International Conference on Mobile Business (ICMB 2009), 2009.

80. S. A. Grandhi, Q. Jones, Karam, "Sharing the big apple: a survey study of people place and locatability" in presented at CHI '05 extended abstracts on Human factors in computing systems, Portland, OR:, 2005.

81. S. J. Fusco, K. Michael, M. G. Michael, R. Abbas, "Exploring the Social Implications of Location Based Social Networking: An inquiry into the perceived positive and negative impacts of using LBSN between friends", International Conference on Mobile Business, 2010.

82. L. Barkhuus, "Privacy in Location-Based Services Concern vs. Coolness", HCI 2004 workshop: Location System Privacy and Control, 2004.

83. S. Patil, J. Lai, "Who gets to know what when: configuring privacy permissions in an awareness application", Proceedings of the SIGCHI conference on Human factors in computing systems, 2005.

84. S. Consolvo, I. E. Smith, "Location disclosure to social relations: why when & what people want to share", Proceedings of the SIGCHI conference on Human factors in computing systems, 2005.

85. L. Humphreys, "Mobile Social Networks and Social Practice: A Case Study of Dodgeball", Journal of Computer-Mediated Communication, vol. 13, pp. 341-360, 2008.

86. L. Barkhuus, B. Brown, "From awareness to repartee: sharing location within social groups", Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, 2008.

87. J. Y. Tsai, P. Kelley, "Who's viewed you?: the impact of feedback in a mobile location-sharing application", Proceedings of the 27th international conference on Human factors in computing systems, 2009.

88. S. Vihavainen, A. Oulasvirta, "I can't lie anymore!”: The implications of location automation for mobile social applications", 6th Annual International Mobile and Ubiquitous Systems: Networking & Services, 2009.

89. C. Schapsis, Location Based Social Networks Links: A list of Location Based Social Networks, 2010.

90. A. Vasalou, A. Hopfensitz, J. Pitt, "In praise of forgiveness: Ways for repairing trust breakdowns in one-off online interactions", International Journal of Human-Computer Studies, vol. 66, pp. 466-480, 2008.

91. D. Rousseau, S. Sitkin, "Not So Different After All: A Cross-Discipline View of Trust", Academy of Management Review, vol. 22, pp. 393-404, 1998.

92. R. C. Mayer, J. H. Davis, "An Integrative Model of Organizational Trust", Academy of Management Review, vol. 20, pp. 709-734, 1995.

93. K. Bijlsma-Frankema, A. C. Costa, "Understanding the Trust-Control Nexus", International Sociology, vol. 20, pp. 259-282, 2005.

94. J. D. Lewis, A. Weigert, "Trust as a Social Reality", Social Forces, vol. 63, pp. 967-985, 1985.

Acknowledgments

The authors would like to acknowledge the funding support of the Australian Research Council (Discovery grant DP0881191): “Toward the Regulation of the Location-Based Services Industry: Influencing Australian Government Telecommunications Policy”.

Keywords

Informatics, Social network services, Space technology, Privacy, Communications technology, Information systems, Social implications of technology, Context, Surveillance, Smart phones, social networking (online), data privacy, mobile computing, social aspects of automation, information and communication technology design, social informatics, location-based social networking, mobile application, classification model, location based service, online social networking, trust, friendship, privacy, social life

Citation:  Sarah Jean Fusco, Katina Michael and M. G. Michael, "Using a social informatics framework to study the effects of location-based social networking on relationships between people: A review of literature",  2010 IEEE International Symposium on Technology and Society (ISTAS), 7-9 June 2010, Wollongong, Australia, DOI: 10.1109/ISTAS.2010.5514641

 

 

Toward a State of Überveillance

Introduction

Überveillance is an emerging concept, and neither its application nor its power have yet fully arrived [38]. For some time, Roger Clarke's [12, p. 498] 1988 dataveillance concept has been prevalent: the “systematic use of personal data systems in the investigation or monitoring of the actions of one or more persons.”

Almost twenty years on, technology has developed so much and the national security context has altered so greatly [52], that there is a pressing need to formulate a new term to convey both the present reality, and the Realpolitik (policy primarily based on power) of our times. However, if it had not been for dataveillance, überveillance could not be. It must be emphasized that dataveillance will always exist - it will provide the scorecard for the engine being used to fulfill überveillance.

Dataveillance to Überveillance

Überveillance takes that which was static or discrete in the dataveillance world, and makes it constant and embedded. Consider überveillance not only automatic and having to do with identification, but also about real-time location tracking and condition monitoring. That is, überveillance connotes the ability to automatically locate and identify - in essence the ability to perform automatic location identification (ALI). Überveillance has to do with the fundamental who (ID), where (location), and when (time) questions in an attempt to derive why (motivation), what (result), and even how (method/plan/thought). Überveillance can be a predictive mechanism for a person's expected behavior, traits, likes, or dislikes; or it can be based on historical fact; or it can be something in between. The inherent problem with überveillance is that facts do not always add up to truth (i.e., as in the case of an exclusive disjunction T + T = F), and predictions based on überveillance are not always correct.

Überveillance is more than closed circuit television feeds, or cross-agency databases linked to national identity cards, or biometrics and ePassports used for international travel. Überveillance is the sum total of all these types of surveillance and the deliberate integration of an individual's personal data for the continuous tracking and monitoring of identity and location in real time. In its ultimate form, überveillance has to do with more than automatic identification technologies that we carry with us. It has to do with under-the-skin technology that is embedded in the body, such as microchip implants; it is that which cuts into the flesh - a charagma (mark) [61]. Think of it as Big Brother on the inside looking out. This charagma is virtually meaningless without the hybrid network architecture that supports its functionality: making the person a walking online node i.e., beyond luggable netbooks, smart phones, and contactless cards. We are referring here to the lowest common denominator, the smallest unit of tracking - presently a tiny chip inside the body of a human being, which could one day work similarly to the black box.

Implants cannot be left behind, cannot be lost, and supposedly cannot be tampered with; they are always on, can link to objects, and make the person seemingly otherworldly. This act of “chipification” is best illustrated by the ever-increasing uses of implant devices for medical prosthesis and for diagnostics [54]. Humancentric implants are giving rise to the Electrophorus [36, p. 313], the bearer of electric technology; an individual entity very different from the sci-fi notion of Cyborg as portrayed in such popular television series as the Six Million Dollar Man (1974–1978). In its current state, the Electrophorus relies on a device being triggered wirelessly when it enters an electromagnetic field; these properties now mean that systems can interact with people within a spatial dimension, unobtrusively [62]. And it is surely not simple coincidence that alongside überveillance we are witnessing the philosophical reawakening (throughout most of the fundamental streams running through our culture) of Nietzsche's Übermensch - the overcoming of the “all-too-human” [25].

Legal and Ethical Issues

In 2005 the European Group on Ethics (EGE) in Science and New Technologies, established by the European Commission (EC), submitted an Opinion on ICT implants in the human body [45]. The thirty-four page document outlines legal and ethical issues having to do with ICT implants, and is based on the European Union Treaty (Article 6) which has to do with the “fundamental rights” of the individual. Fundamental rights have to do with human dignity, the right to the integrity of the person, and the protection of personal data. From the legal perspective the following was ascertained [45, pp. 20–21]:

  • the existence of a recognised serious but uncertain risk, currently applying to the simplest types of ICT implants in the human body, requires application of the precautionary principle. In particular, one should distinguish between active and passive implants, reversible and irreversible implants, and between offline and online implants;
  • the purpose specification principle mandates at least a distinction between medical and non-medical applications. However, medical applications should also be evaluated stringently, partly to prevent them from being invoked as a means to legitimize other types of application;
  • the data minimization principle rules out the lawfulness of ICT implants that are only aimed at identifying patients, if they can be replaced by less invasive and equally secure tools;
  • the proportionality principle rules out the lawfulness of implants such as those that are used, for instance, exclusively to facilitate entrance to public premises;
  • the principle of integrity and inviolability of the body rules out that the data subject's consent is sufficient to allow all kinds of implant to be deployed; and
  • the dignity principle prohibits transformation of the body into an object that can be manipulated and controlled remotely - into a mere source of information.

ICT implants for non-medical purposes violate fundamental legal principles. ICT implants also have numerous ethical issues, including the requirement for: non-instrumentalization, privacy, non-discrimination, informed consent, equity, and the precautionary principle (see also [8], [27], [29]). It should be stated, however, that the EGE, while not recommending ICT implants for non-medical applications because they are fundamentally fraught with legal and ethical issues, did state the following [45, p. 32]:

ICT implants for surveillance in particular threaten human dignity. They could be used by state authorities, individuals and groups to increase their power over others. The implants could be used to locate people (and also to retrieve other kinds of information about them). This might be justified for security reasons (early release for prisoners) or for safety reasons (location of vulnerable children).

However, the EGE insists that such surveillance applications of ICT implants may only be permitted if the legislator considers that there is an urgent and justified necessity in a democratic society (Article 8 of the Human Rights Convention) and there are no less intrusive methods. Nevertheless the EGE does not favor such uses and considers that surveillance applications, under all circumstances, must be specified in legislation. Surveillance procedures in individual cases should be approved and monitored by an independent court.

The same general principles should apply to the use of ICT implants for military purposes. Although this Opinion was certainly useful, we have growing concerns about the development of the information society, the lack of public debate and awareness regarding this emerging technology, and the pressing need for regulation that has not occurred commensurate to developments in this domain.

Herein rests the problem of human rights and striking a “balance” between freedom, security, and justice. First, we contend that it is a fallacy to speak of a balance. In the microchip implant scenario, there will never be a balance, so long as someone else has the potential to control the implant device or the stored data about us that is linked to the device. Second, we are living in a period where chip implants for the purposes of segregation are being discussed seriously by health officials and politicians. We are speaking here of the identification of groups of people in the name of “health management” or “national security.” We will almost certainly witness new, and more fixed forms, of “electronic apartheid.”

Consider the very real case where the “Papua Legislative Council was deliberating a regulation that would see microchips implanted in people living with HIV/AIDS so authorities could monitor their actions” [50]. Similar discussions on “registration” were held regarding asylum seekers and illegal immigrants in the European Union [18]. RFID implants or the “tagging” of populations in Asia (e.g., Singapore) were also considered “the next step” in the containment and eradication of the Severe Acute Respiratory Syndrome (SARS) in 2003 [43]. Apart from disease outbreaks, RFID has also been discussed as a response and recovery device for emergency services personnel dispatched to terrorist disasters [6], and for the identification of victims of natural disasters, such as in the case of the Boxing Day Tsunami [10]. The question remains whether there is a truly legitimate use function of chip implants for the purposes of emergency management as opposed to other applications. Definition plays a critical role in this instance. A similar debate has ensued in the use of the Schengen Information System II in the European Union where differing states have recorded alerts on individuals based on their understanding of a security risk [17].

In June of 2006, legislative analyst Anthony Gad, reported in brief 06-13 for the Legislative Reference Bureau [16], that the:

2005 Wisconsin Act 482, passed by the legislature and signed by Governor Jim Doyle on May 30, 2006, prohibits the required implanting of microchips in humans. It is the first law of its kind in the nation reflecting a proactive attempt to prevent potential abuses of this emergent technology.

A number of states in the United States have passed similar laws [63], despite the fact that at the national level, the U.S. Food and Drug Administration [15] has allowed radio frequency identification implants for medical use in humans. The Wisconsin Act [59] states:

The people of the state of Wisconsin, represented in senate and assembly, do enact as follows: SECTION 1. 146.25 of the statutes is created to read: 146.25 Required implanting of microchip prohibited. (1) No person may require an individual to undergo the implanting of a microchip. (2) Any person who violates sub. (1) may be required to forfeit not more than $10,000. Each day of continued violation constitutes a separate offense.

North Dakota followed Wisconsin's example. Wisconsin Governor Hoeven signed a two sentence bill into state law on April 4, 2007. The bill was criticized by some who said that while it protected citizens from being “injected” with an implant, it did not prevent someone from making them swallow it [51]. And indeed, there are now a number of swallowable capsule technologies for a variety of purposes that have been patented in the U.S. and worldwide. As with a number of other states, California Governor Arnold Schwarzenegger signed bill SB 362 proposed by state Senator Joe Simitian barring “employers and others from forcing people to have a radio frequency identification (RFID) device implanted under their skin” [28], [60]. According to the Californian Office of Privacy Protection [9] this bill

… would prohibit a person from requiring any other individual to undergo the subcutaneous implanting of an identification device. It would allow an aggrieved party to bring an action against a violator for injunctive relief or for the assessment of civil penalties to be determined by the court.

The bill, which went into effect January 1, 2008, did not receive support from the technology industry on the contention that it was “unnecessary.”

Interestingly, however, it is in the United States that most chip implant applications have occurred, despite the calls for caution. The first human-implantable passive RFID microchip (the VeriChipTM) was approved for medical use in October of 2004 by the U.S. Food and Drug Administration. Nine hundred hospitals across the United States have registered the VeriChip's VeriMed system, and now the corporation's focus has moved to “patient enrollment” including people with diabetes, Alzheimer's, and dementia [14]. The VeriMedTM Patient Identification System is used for “rapidly and accurately identifying people who arrive in an emergency room and are unable to communicate” [56].

In February of 2006 [55], CityWatcher.com reported two of its employees had “glass encapsulated microchips with miniature antennas embedded in their forearms … merely a way of restricting access to vaults that held sensitive data and images for police departments, a layer of security beyond key cards and clearance codes.” Implants may soon be applied to the corrective services sector [44]. In 2002, 27 of 50 American states were using some form of satellite surveillance to monitor parolees. Similar schemes have been used in Sweden since 1994. In the majority of cases, parolees wear wireless wrist or ankle bracelets and carry small boxes containing the vital tracking and positioning technology. The positioning transmitter emits a constant signal that is monitored at a central location [33]. Despite continued claims by researchers that RFID is only used for identification purposes, Health Data Management disclosed that VeriChip (the primary commercial RFID implant patient ID provider) had enhanced its patient wander application by adding the ability to follow the “real-time location of patients, the ability to define containment areas for different classes of patients, and one-touch alerting. The system now also features the ability to track equipment in addition to patients” [19]. A number of these issues have moved the American Medical Association to produce an ethics code for RFID chip implants [4], [41], [47].

Outside the U.S., we find several applications for human-centric RFID. VeriChip's Scott Silverman stated in 2004 that 7000 chip implants had been given to distributors [57]. Today the number of VeriChip implantees worldwide is estimated to be at about 2000. So where did all these chips go? As far back as 2004, a nightclub in Barcelona, Spain [11] and Rotterdam, The Netherlands, known as the Baja Beach Club was offering “its VIP clients the opportunity to have a syringeinjected microchip implanted in their upper arms that not only [gave] them special access to VIP lounges, but also [acted] as a debit account from which they [could] pay for drinks” [39]. Microchips have also been implanted in a number of Mexican officials in the law enforcement sector [57]. “Mexico's top federal prosecutors and investigators began receiving chip implants in their arms … in order to get access to restricted areas inside the attorney general's headquarters.” In this instance, the implant acted as an access control security device despite the documented evidence that RFID is not a secure technology (see Gartner Research report [42]).

Despite the obvious issues related to security, there are a few unsolicited studies that forecast that VeriChip (now under the new corporate name Positive ID) will sell between 1 million and 1.4 million chips by 2020 [64, p. 21]. While these forecasts may seem over inflated to some researchers, one need only consider the very real possibility that some Americans may opt-in to adopting a Class II device that is implantable, life-supporting, or life-sustaining for more affordable and better quality health care (see section C of the Health Care bill titled: National Medical Device Registry [65, pp. 1001–1012]. There is also the real possibility that future pandemic outbreaks even more threatening than the H1N1 influenza, may require all citizens to become implanted for early detection depending on their travel patterns [66].

In the United Kingdom, The Guardian [58], reported that 11-year old Danielle Duval had an active chip (i.e., containing a rechargeable battery) implanted in her. Her mother believes that it is no different from tracking a stolen car, albeit for more important application. Mrs. Duvall is considering implanting her younger daughter age 7 as well but will wait until the child is a bit older, “so that she fully understands what's happening.” In Tokyo the Kyowa Corporation in 2004 manufactured a schoolbag with a GPS device fitted into it, to meet parental concerns about crime, and in 2005 Yokohama City children were involved in a four month RFID bracelet trial using the I-Safety system [53]. In 2007, Trutex, a company in Lancashire England, was seriously considering fitting the school uniforms they manufacture with RFID [31]. What might be next? Will concerned parents force microchip implants on minors?

Recently, decade-old experimental studies on microchip implants in rats have come to light tying the device to tumors [29]. The American Veterinary Medical Association [3] was so concerned that they released the following statement:

The American Veterinary Medical Association (AVMA) is very concerned about recent reports and studies that have linked microchip identification implants, commonly used in dogs and cats, to cancer in dogs and laboratory animals…. In addition, removal of the chip is a more invasive procedure and not without potential complications. It's clear that there is a need for more scientific research into this technology. [emphasis added]

We see here evidence pointing to the notion of “no return” - an admittance that removal of the chip is not easy, and not without complications.

The Norplant System was a levonorgestrel contraceptive insert that over 1 million women in the United States, and over 3.6 million women worldwide had been implanted with through 1996 [2]. The implants were inserted just under the skin of the upper arm in a surgical procedure under local anesthesia and could be removed in a similar fashion. As of 1997, there were 2700 Norplant suits pending in the state and federal courts across the United States alone. Most of the claims had to do with “pain or damage associated with insertion or removal of the implants … [p]laintiffs have contended that they were not adequately warned, however, concerning the degree or severity of these events” [2]. Thus, concerns for the potential for widespread health implications caused by humancentric implants have also been around for some time. In 2003, Covacio provided evidence why implants may impact humans adversely, categorizing these into thermal (i.e., whole/partial rise in body heating), stimulation (i.e., excitation of nerves and muscles), and other effects, most of which are currently unknown [13].

Role of Emerging Technologies

Wireless networks are now commonplace. What is not yet common are formal service level agreements to hand-off transactions between different types of networks. These architectures and protocols are being developed, and it is only a matter of time before existing technologies have the capability to track individuals between indoor and outdoor locations seamlessly, or a new technology is created to do what present-day networks cannot [26]. For instance, a wristwatch device with GPS capabilities to be worn under the skin translucently is one idea that was proposed in 1998. Hengartner and Steenkiste [23] forewarn that “[l]ocation is a sensitive piece of information” and that “releasing it to random entities might pose security and privacy risks.”

There is nowhere to hide in this digital society, and nothing remains private (in due course, perhaps, not even our thoughts). Nanotechnology, the engineering of functional systems at the molecular level, is also set to change the way we perceive surveillance - microscopic bugs (some 50 000 times smaller than the width of the human hair) will be more parasitic than even the most advanced silicon-based auto-ID technologies. In the future we may be wearing hundreds of microscopic implants, each relating to an exomuscle or an exoskeleton, and which have the power to interact with literally millions of objects in the “outside world.” The question is not whether state governments will invest in this technology: they are already making these investments [40]. There is a question whether the next generation will view this technology as super “cool” and convenient and opt-in without comprehending the consequences of their compliance.

The social implications of these über-intrusive technologies will obey few limits and no political borders. They will affect our day-to-day existence and our family and community relations. They will give rise to mental health problems, even more complex forms of paranoia and obsessive compulsive disorder. Many scholars now agree that with the support of modern neuroscience, “the intimate relation between bodily and psychic functions is basic to our personal identity” [45, p. 3]. Religious observances will be affected; for example, in the practice of confession and a particular understanding of absolution from “sin” - people might confess as much as they might want, but the records on the database, the slate, will not be wiped clean. The list of social implications is limited only by our imaginations. The peeping Tom that we carry on the inside will have manifest consequences for that which philosophers and theologians normally term self-consciousness.

Paradoxical Levels of Überveillance

In all of these factors rests the multiple paradoxical levels of überveillance. In the first instance, it will be one of the great blunders of the new political order to think that chip implants (or indeed nanodevices) will provide the last inch of detail required to know where a person is, what they are doing, and what they are thinking. Authentic ambient context will always be lacking, and this could further aggravate potential “puppeteers” of any comprehensive surveillance system. Marcus Wigan captures this critical facet of context when he speaks of “asymmetric information held by third parties.” Second, chip implants will not necessarily make a person smarter or more aware (unless someone can afford chip implants that have that effect), but on the contrary and under the “right” circumstances may make us increasingly unaware and mute. Third, chip implants are not the panacea they are made out to be - they can fail, they can be stolen, they are not tamper-proof, and they may cause harmful effects to the body. They are a foreign object and their primary function is to relate to the outside world not to the body itself (as in the case of pacemakers and cochlear implants). Fourth, chip implants at present do not give a person greater control over her space, but allow for others to control and to decrease the individual's autonomy and as a result decrease interpersonal trust at both societal and state levels. Trust is inexorably linked to both metaphysical and moral freedom. Therefore the naive position routinely heard in the public domain that if you have “nothing to hide, why worry?” misses the point entirely. Fifth, chip implants will create a presently unimaginable digital divide - we are not referring to computer access here, or Internet access, but access to another mode of existence. The “haves” (implantees) and the “have-nots” (non-implantees) will not be on speaking terms; perhaps this suggests a fresh interpretation to the biblical tower of Babel (Gen. 11:9).

In the scenario, where a universal ID is instituted, unless the implant is removed within its prescribed time, the body will adopt the foreign object and tie it to tissue. At this moment, there will be no exit strategy and no contingency plan; it will be a life sentence to upgrades, virus protection mechanisms, and inescapable intrusion. Imagine a working situation where your computer - the one that stores all your personal data - has been hit by a worm, and becomes increasingly inoperable and subject to overflow errors and connectivity problems. Now imagine the same thing happening with an embedded implant. There would be little choice other than to upgrade or to opt out of the networked world altogether.

A decisive step towards überveillance will be a unique and “non-refundable” identification number (ID). The universal drive to provide us all with cradle-to-grave unique lifetime identifiers (ULIs), which will replace our names, is gaining increasing momentum, especially after September 11. Philosophers have have argued that names are the signification of identity and origin; our names possess both sense and reference [24, p. 602f]. Two of the twentieth century's greatest political consciences (one who survived the Stalinist purges and the other the holocaust), Aleksandr Solzhenitsyn and Primo Levi, have warned us of the connection between murderous regimes and the numbering of individuals. It is far easier to extinguish an individual if you are rubbing out a number rather than a life history.

Aleksandr Solzhenitsyn recounts in The Gulag Archipelago (1918–56), (2007, p. 346f):

[Corrective Labor Camps] quite blatantly borrowed from the Nazis a practice which had proved valuable to them - the substitution of a number for the prisoner's name, his “I”, his human individuality, so that the difference between one man and another was a digit more or less in an otherwise identical row of figures … [i]f you remember all this, it may not surprise you to hear that making him wear numbers was the most hurtful and effective way of damaging a prisoner's self-respect.

Primo Levi writes similarly in his own well-known account of the human condition in The Drowned and the Saved (1989, p. 94f):

Altogether different is what must be said about the tattoo [the number], an altogether autochthonous Auschwitzian invention … [t]he operation was not very painful and lasted no more than a minute, but it was traumatic. Its symbolic meaning was clear to everyone: this is an indelible mark, you will never leave here; this is the mark with which slaves are branded and cattle sent to the slaughter, and this is what you have become. You no longer have a name; this is your new name.

And many centuries before both Solzhenitsyn and Levi were to become acknowledged as two of the greatest political consciences of our times, an exile on the isle of Patmos - during the reign of the Emperor Domitian - referred to the abuses of the emperor cult which was practiced in Asia Minor away from the more sophisticated population of Rome [37, pp. 176–196]. He was Saint John the Evangelist, commonly recognized as the author of the Book of Revelation (c. A.D. 95):

16 Also it causes all, both small and great, both rich and poor, both free and slave, to be marked on the right hand or the forehead, 17 so that no one can buy or sell unless he has the mark, that is, the name of the beast or the number of its name. 18 This calls for wisdom: let him who has understanding reckon the number of the beast, for it is a human number, its number is six hundred and sixty-six (Rev 13:16–18) [RSV, 1973].

The technological infrastructures—the software, the middleware, and the hardware for ULIs—are readily available to support a diverse range of humancentric applications, and increasingly those embedded technologies which will eventually support überveillance. Multi-national corporations, particularly those involved in telecommunications, banking, and health are investing millions (expecting literally billions in return) in identifiable technologies that have a tracking capability. At the same time the media, which in some cases may yield more sway with people than government institutions themselves, squanders its influence and is not intelligently challenging the automatic identification (auto-ID) trajectory. As if in chorus, blockbuster productions from Hollywood are playing up all forms of biometrics as not only hip and smart, but also as unavoidable mini-device fashion accessories for the upwardly mobile and attractive. Advertising plays a dominant role in this cultural tech-rap. Advertisers are well aware that the market is literally limitless and demographically accessible at all levels (and more tantalizingly from cradle-to-grave consumers). Our culture, which in previous generations was for the better part the vanguard against most things detrimental to our collective well-being, is dangerously close to bankrupt (it already is idol worshipping) and has progressively become fecund territory for whatever idiocy might take our fancy. Carl Bernstein [7] captured the atmosphere of recent times very well:

We are in the process of creating what deserves to be called the idiot culture. Not an idiot sub-culture, which every society has bubbling beneath the surface and which can provide harmless fun; but the culture itself. For the first time the weird and the stupid and the coarse are becoming our cultural norm, even our cultural ideal.

Despite the technological fixation with which most of the world is engaged, there is a perceptible mood of a collective disquiet that something is not as it should be. In the face of that, this self-deception of “wellness” is not only taking a stronger hold on us, but it is also being rationalized and deconstructed on many levels. We must break free of this dangerous daydream to make out the cracks that have already started to appear on the gold tinted rim of this seeming 21st century utopia. The machine, the new technicized “gulag archipelago” is ever pitiless and without conscience. It can crush bones, break spirits, and rip out hearts without pausing.

The authors of this article are not anti-government; nor are they conspiracy theorists (though we now know better than to rule out all conspiracy theories). Nor do they believe that these dark scenarios are inevitable. But we do believe that we are close to the point of no return. Others believe that point is much closer [1]. It remains for individuals to speak up and argue for, and to demand regulation, as has happened in several states in the United States where Acts have been established to avoid microchipping without an individual's consent, i.e., compulsory electronic tagging of citizens. Our politicians for a number of reasons will not legislate on this issue of their own accord, with some few exceptions. It would involve multifaceted industry and absorb too much of their time, and there is the fear they might be labelled anti-technology or worse still, failing to do all that they can to fight against “terror.” This is one of the components of the modern-day Realpolitik, which in its push for a transparent society is bulldozing ahead without any true sensibility for the richness, fullness, and sensitivity of the undergrowth. As an actively engaged community, as a body of concerned researchers with an ecumenical conscience and voice, we can make a difference by postponing or even avoiding some of the doomsday scenario outlined here.

Finally, the authors would like to underscore three main points. First, nowhere is it suggested in this paper that medical prosthetic or therapeutic devices are not welcome technological innovations. Second, the positions, projections, and beliefs expressed in this summary do not necessarily reflect the positions, projections, and beliefs of the individual contributors to this special section. And third the authors of the papers do embrace all that which is vital and dynamic with technology, but reject its rampant application and diffusion without studied consideration as to the potential effects and consequences.

References

1. Surveillance Society Clock 23:54 American Civil Liberties Union, Oct. 2007, [online] Available: http://www.aclu.org/privacy/spying/surveillancesocietyclock.html, accessed.

2. Norplant system contraceptive inserts, Oct. 2007, [online] Available: http://www.ama-assn.org/ama/pub/category/print/13593.html.

3. "Breaking news: Statement on microchipping", American Veterinary Medical Association, Oct. 2007, [online] Available: http://www.avma.org/ aa/microchip/breaking_news_070913_pf.asp.

4. B. Bacheldor, "AMA issues Ethics Code for RFID chip implants", RFID J., Oct. 2007, [online] Available: http://www.rfidjournal.com/article/ articleprint/3487/-1/1/.

5. E. Ball, K. Bond, Bess Marion v. Eddie Cafka and ECC Enterprises Inc., Oct. 2007, [online] Available: http://www. itmootcourt.com/2005%20Briefs/Petitioner/Team18.pdf.

6. "Implant chip to identify the dead", BBC News, Jan. 2006, [online] Available: http://news.bbc.co.Uk/1/hi/technology/4721175.stm. 

7. C. Bernstein, The Guardian, June 1992.

8. P. Burton, K. Stockhausen, The Australian Medical Association's Submission to the Legal and Constitutional's Inquiry into the Privacy Act 1988, Oct. 2007, [online] Available: http://www.ama.com.au/web.nsf/doc/ WEEN-69X6DV/\$file/Privacy_Submission_to_Senate_Committee. doc.

9. California privacy legislation, State of California:Office of Privacy Protection, July 2007, [online] Available: http://www.privacy.ca.gov/califlegis.htm.

10. "Thai wave disaster largest forensic challenge in years: Expert", Channel News Asia, Feb. 2005, [online] Available: http://www.channelnewsasia.com/stories/afp_asiapacific/view/125459/1/.html.

11. C. Chase, "VIP Verichip", Baja Beach House- Zona VIP, Oct. 2007, [online] Available: http:// www.baja-beachclub.com/bajaes/asp/zonavip2.aspx.

12. R. A. Clarke, "Information technology and dataveillance", Commun. ACM, vol. 31, no. 5, pp. 498-512, 1988.

13. S. Covacio, "Technological problems associated with the subcutaneous microchips for human identification (SMHId)", InSITE-Where Parallels Intersect, pp. 843-853, June 2003.

14. "13 diabetics implanted with VeriMed RFID microchip at Boston diabetes EXPO", Medical News Today, Oct. 2007, [online] Available: http://www.medicalnewstoday.com/articles/65560.php.

15. "Medical devices; General hospital and personal use devices; classification of implantable radiofrequency transponder system for patient identification and health information", U.S. Food and Drug Administration-Department of Health and Human Services, vol. 69, no. 237, Oct. 2007, [online] Available: http://www.fda.gov/ohrms/dockets/98fr/0427077.htm.

16. A. Gad, "Legislative Brief 06-13: Human Microchip Implantation", Legislative Briefs from the Legislative Reference Bureau, June 2006, [online] Available: http://www.legis.state.wi.us/lrb/pubs/Lb/06Lb13.pdf.

17. E. Guild, D. Bigo, "The Schengen Border System and Enlargement" in Police and Justice Co-operation and the New European Borders, European Monographs, pp. 121-138, 2002.

18. M. Hawthorne, "Refugees meeting hears proposal to register every human in the world", Sydney Morning Herald, July 2003, [online] Available: http://www.smh.com.au/breaking/2001/12/14/FFX058CU6VC.html.

19. "VeriChip enhances patient wander app", Health Data Management, Oct. 2007, [online] Available: http://healthdatamanagement.com/ HDMSearchResultsDetails.cfm?articleId=12361.

20. "VeriChip buys monitoring tech vendor", Health Data Management, July 2005, [online] Available: http://healthdatamanagement.com/ HDMSearchResultsDetails.cfm?articleId=12458.

21. "Chips keep tabs on babies moms", Health Data Management, Oct. 2005, [online] Available: http://healthdatamanagement.com/HDMSearchResultsDetails. cfm?articleId=15439.

22. "Baylor uses RFID to track newborns", Health Data Management, July 2007, [online] Available: http://healthdatamanagement.com/HDMSearchResultsDetails.cfm?articleId=15439.

23. U. Hengartner, P. Steenkiste, "Access control to people location information", ACM Trans. Information Syst. Security, vol. 8, no. 4, pp. 424-456, 2005.

24. "Names" in Oxford Companion to Philosophy, U.K., Oxford:Oxford Univ. Press, pp. 602f, 1995.

25. "Nietzsche Friedrich" in Oxford Companion to Philosophy, U.K., Oxford:Oxford Univ. Press, pp. 619-623, 1995.

26. "RFID tags equipped with GPS", Navigadget, Oct. 2007, [online] Available: http://www.navigadget.com/index.php/2007/06/27/rfid-tags-equipped-with-gps/.

27. "Me & my RFIDs", IEEE Spectrum, vol. 4, no. 3, pp. 14-25, Mar. 2007.

28. K. C. Jones, "California passes bill to ban forced RFID tagging", InformationWeek, Sept. 2007, [online] Available: http://www.informationweek.com/ shared/printableArticle.jhtml?articleID=201803861.

29. T. Lewan, "Microchips implanted in humans: High-tech helpers or Big Brother's surveillance tools?", The Associated Press, Oct. 2007, [online] Available: http://abcnews.go.com/print?id=3401306.

30. T. Lewan, Chip implants linked to animal tumors, Associated Press/ WashingtonPost.com, Oct. 2007, [online] Available: http://www.washingtonpost.com/wp-dyn/content/article/2007/09/09/AR2007090900467. html.

31. J. Meikle, "Pupils face tracking bugs in school blazers", The Guardian, Aug. 2007, [online] Available: http://www.guardian.co.uk/uk_news/ story/0, 2152979,00.

32. K. Michael, Selected Works of Dr. Katina Michael, Australia, Wollongong:Univ. of Wollongong, Oct. 2007, [online] Available: http://ro.uow.edu.au/kmichael/.

33. K. Michael, A. Masters, "Realised applications of positioning technologies in defense intelligence" in Applications of Information Systems to Homeland Security and Defense, IDG Press, pp. 164-192, 2006.

34. K. Michael, A. Masters, "The advancement of positioning technologies in defence intelligence" in Applications of Information Systems to Homeland Security and Defense, IDG Press, pp. 193-214, 2006.

35. K. Michael, M. G. Michael, "Towards chipification: The multifunctional body art of the net generation" in Cultural Attitudes Towards Technology and Communication, Estonia, Tartu:, pp. 622-641, 2006.

36. K. Michael, M. G. Michael, "Homo electricus and the continued speciation of humans" in The Encyclopedia of Information Ethics and Security, IGI Global, pp. 312-318, 2007.

37. M. G. Michael, Ch IX: Imperial cult in The Number of the Beast 666 (Revelation 13:16-18): Background Sources and Interpretation, Macquarie Univ., 1998.

38. M. G. Michael, "Überveillance: 24/7 × 365-People tracking and monitoring", Proc. 29 International Conference of Data Protection and Privacy Commissioners: Privacy Horizons Terra Incognita, 2007-Sept.-25-28, [online] Available: http://www.privacyconference2007.gc.ca/Terra_Incognita_program_E.html.

39. S. Morton, "Barcelona clubbers get chipped", BBC News, Oct. 2007, [online] Available: http://news.bbc.co.Uk/2/hi/technology/3697940.stm. 

40. D. Ratner, M. A. Ratner, Nanotechnology and Homeland Security: New Weapons for New Wars, U.S.Α., New Jersey:Prentice Hall, 2004.

41. J. H. Reichman, "RFID labeling in humans American Medical Association House of Delegates: Resolution: 6 (A-06)", Reference Committee on Amendments to Constitution and Bylaws, 2006, [online] Available: http://www. ama-assn.org/amal/pub/upload/mm/471/006a06.doc.

42. M. Reynolds, "Despite the hype microchip implants won't deliver security", Gartner Research, Oct. 2007, [online] Available: http://www.gartner.com/ DisplayDocument?doc_cd=121944.

43. "Singapore fights SARS with RFID", RFID J., Aug. 2005, [online] Available: http://www.rfidjournal.com/article/articleprint/446/-1/1/.

44. "I am not a number - Tracking Australian prisoners with wearable RFID tech", RFID Gazette, Oct. 2007, [online] Available: http://www. rfidgazette.org/2006/08/i_am_not_a_numb.html.

45. S. Rodotà, R. Capurro, "Ethical aspects of ICT implants in the human body", Opinion of the European Group on Ethics in Science and New Technologies to the European Commission N° 20 Adopted on 16/03/2005, Oct. 2007, [online] Available: http://ec.europa.eu/european_group_ethics/docs/ avis20_en.pdf.

46. "Papua Legislative Council deliberating microchip regulation for people with HIV/AIDS", Radio New Zealand International, Oct. 2007, [online] Available: http://www.rnzi.com/pages/news. php?op=read&id=33896.

47. R. M. Sade, "Radio frequency ID devices in humans Report of the Council on Ethical and Judicial Affairs: CEJA Report 5-A-07", Reference Committee on Amendments to Constitution and Bylaws, Oct. 2007, [online] Available: http://www.ama-assn.org/amal/pub/upload/ mm/369/ceja_5a07.pdf.

48. B. K. Schuerenberg, "Implantable RFID chip takes root in CIO: Beta tester praises new mobile device though some experts see obstacles to widespread adoption", Health Data Management, Feb. 2005, [online] Available: http://www.healthdatamanagement.com/HDMSearchResultsDetails. cfm?articleId=12232.

49. B. K. Schuerenberg, "Patients let RFID get under their skin", Health Data Management, Nov. 2005, [online] Available: http://healthdatamanagement. com/HDMSearchResultsDetails.cfm?articleId=12601.

50. N. D. Somba, "Papua considers 'chipping' people with HIV/ AIDS", The Jakarta Post, Oct. 2007, [online] Available: http://www.thejakartapost. com/yesterdaydetail.asp?fileid=20070724.G04.

51. M. L. Songini, "N.D. bans forced RFID chipping Governor wants a balance between technology privacy", ComputerWorld, Oct. 2007, [online] Available: http://www.computerworld.com/action/article.do?command =viewArticleBasic&taxonomyId=15&articleId=9016385&intsrc=h m_topic.

52. D. M. Snow, National Security For A New Era.: Globalization And Geopolitics, Addison-Wesley, 2005.

53. C. Swedberg, "RFID watches over school kids in Japan", RFID J., Oct. 2007, [online] Available: http://www.rfidjournal.com/article/ articleview/2050/1/1/.

54. C. Swedberg, "Alzheimer's care center to carry out VeriChip pilot", RFID J., Oct. 2007, [online] Available: http://www.rfidjournal.com/article/ articleview/3340/1/1/.

55. "Chips: High tech aids or tracking tools?", Fairfax Digital: The Age, Oct. 2007, [online] Available: http://www.theage.com.au/news/Technology/Microchip-Implants-Raise-Privacy-Concern/2007/07/22/1184560127138. html. 

56. "VeriChip Corporation adds more than 200 hospitals at the American College of Emergency Physicians (ACEP) Conference", VeriChip News Release, 2007-Oct.-11, [online] Available: http://www.verichipcorp.com/ news/1192106879.

57. W. Weissert, "Microchips implanted in Mexican officials", Associated Press, Oct. 2007, [online] Available: http://www.msnbc.msn.com/id/5439055/.

58. J. Wilson, "Girl to get tracker implant to ease parents' fears", The Guardian, Oct. 2002, [online] Available: http://www.guardian.co.uk/Print/0,3858,4493297,00. html.

59. Wisconsin Act 482, May 2006, [online] Available: http://www.legis.state. wi.us/2005/data/acts/05Act482.pdf.

60. J. Woolfolk, "Back off Boss: Forcible RFID implants outlawed in California", Mercury News, Oct. 2007, [online] Available: http://www.mercurynews. com/portlet/article/html/fragments/print_article.jsp?articleId=7162880.

61. Macquarie Dictionary, Sydney University, pp. 1094, 2009.

62. K. Michael, M. G. Michael, Innovative Automatic Identification and Location-Βased Services: From Bar Codes to Chip Implants, PA, Hershey:IGI Global, pp. 401, 2009

63. A. Griggieri, K. Michael, M. G. Michael, "The legal ramifications of microchipping people in the United States of America- A state legislative comparison", Ρroc. 2009 IEEE Int. Symp. Technology and Society, pp. 1-8, 2009.

64. A. Marburger, J. Coon, K. Fleck, T. Kremer, VeriChip™: Implantable RFID for The Health Industry, June 2005, [online] Available: http://www. thecivilrightonline.com/docs/Verichip_Implantable%20RFID.pdf.

65. 111TH CONGRESS 1ST SESSION H. R. 11 A BILL: To provide affordable quality health care for all Americans and reduce the growth in health care spending and for other purposes, 2010-Apr.-1, [online] Available: http://waysandmeans. house.gov/media/pdf/111/AAHCA09001xml.pdf.

66. Positive ID. 2010. Health-ID, May 2010, [online] Available: http://www.positiveidcorp.com/ health-id.html.

IEEE Keywords: Implants, TV, Data systems, National security, Pressing, Engines, Condition monitoring, Circuits,Feeds, Databases

Citation: M.G. Michael, Katina Michael, Toward a State of Überveillance, IEEE Technology and Society Magazine ( Volume: 29, Issue: 2, Summer 2010 ), pp. 9 - 16, Date of Publication: 01 June 2010, DOI: 10.1109/MTS.2010.937024

Control, trust, privacy, and security: LBS

4135773-graphic-1-small.gif

Location-based services (LBS) are those applications that utilize the position of an end-user, animal, or thing based on a given device (handheld, wearable, or implanted), for a particular purpose. LBS applications range from those that are mission-critical to those that are used for convenience, from those that are mandatory to those that are voluntary, from those that are targeted at the mass market to those that cater to the needs of a niche market. Location services can be implemented using a variety of access media including global positioning systems and radio-frequency identification, rendering approximate or precise position details.

The introduction of location-based services, which are growing in sophistication and complexity, has brought with it a great deal of uncertainty. Unaddressed topics include: accountability for the accuracy and availability of location information, prioritization and location frequency reporting, the user's freedom to opt-in and opt-out of services, caregiver and guardian rights and responsibilities, the transparency of transactions, and the duration of location information storage. Some of these issues are the focus of court cases across the United States, usually between service providers and disgruntled end-users or law enforcement agencies and suspected criminals.

While we can wait for the courts to set precedents and then take legislative action to learn about how we should act and what we should accept as morally right or wrong, this is only a small part in considering the emerging ethics of an innovation such as location-based services. Laws, similar to global technical standards, usually take a long time to enact. A more holistic approach is required to analyze technology and social implications. This article uses scenarios, in the form of short stories to summarize and draw out the likely issues that could arise from widespread adoption of LBS. It is a plausible future scenario, grounded in the realism of today's technological capabilities.

Role of Scenarios in the Study of Ethics

Articles on ethics in engineering and computing, for the greater part, have been about defining, identifying and describing types of ethics, and emphasizing the importance of ethics in the curriculum and the workplace. A small number of ethics-related studies more directly concerned with invention and innovation consider the possible trajectories of emerging technologies and their corresponding social implications [1], [2]. Within the engineering field, these studies commonly take on the guise of either short stories or case-based instruction [3], [4]. This article uses scenario planning to identify the possible risks related to location-based services in the context of security and privacy. While “day-in-the-life scenarios” have been popular in both human-computer interaction and software engineering studies, they have not been prevalent in the ethics literature [5].

When is a person sufficiently impaired to warrant monitoring?

The most well-known usage of stories related to ethical implications of technology have been constructed by Richard G. Epstein [6]. His 37 stories in the Artificial Intelligence Stories Web are organized thematically based on how the human experience is affected by the technology [7]. Of fiction, Epstein writes that it is “a great device to help one envision the future and to imagine new concepts and even applications” [8]. His Silicon Valley Sentinel-Observer's Series ran as a part of Computers and Society [9]. John M. Artz has written about the importance of stories advancing our knowledge when exploring areas where we do not fully understand a phenomenon [10]. Artz calls stories and our imagination “headlights” that allow us to consider what might lie beyond: “[c]onsider imagination as the creative capacity to think of possibilities. Imagination lets us see the world, not as it is, but as it could be. And seeing the world as it could be allows us to make choices about how it should be.” In 1988, Artz indicated the shortage in short stories in the field, and this paper addresses the shortage by focusing on LBS.

The definition of a scenario used in this paper is “[a]n internally consistent view of what the future might turn out to be” [11]. Scenarios can be used to combine various separate forecasts that pertain to a single topic [12], designed to provide an overall picture of a possible future, and to describe this future in such a way that it is accessible to a layperson in the subject. According to Godet a scenario “must simultaneously be pertinent, coherent, plausible, important and transparent” [13].

The Track, Analyze, Image, Decide, Act (TAIDA) scenario planning framework is used here with respect to LBS to i) identify aspects of the current situation that may have an impact on the future under consideration; ii) deliberate on the possible future consequences of the aspects identified in tracking; iii) approach possible changes intuitively to create a plausible future, “to create not only an intellectual understanding but also an emotional meaning,” iv) determine what should be done about a given scenario in response to issues raised, and v) offer recommendations that will address these issues [14]. Analysis of the future scenario presented will be conducted using deconstruction to draw out the social implications. Deconstruction is an approach to literary analysis that aims “to create an interpretation of the setting or some feature of it to allow people… to have a deeper understanding” [15].

The Roman philosopher Seneca said: “[t]here is no favorable wind for the man who knows not where he is going” [13]. There is certainly merit in exploring the potential effects of LBS before they occur. As Michael and Michael highlight: “[m]ost alarming is the rate of change in technological capabilities without a commensurate and involved response from an informed community on what these changes actually “mean” in real and applied terms, not only for the present but also for the future” [16]. “[T]oday's process of transition allows us to perceive what we are losing and what we are gaining; this perception will become impossible the moment we fully embrace and feel fully at home in the new technologies” [17].

The scenario “Control Unwired” continues five short stories and is set in Australia. The critical analysis that follows is also presented within a predominantly Australian context.

Control Unwired

Vulnerability-The Young Lady

The street appeared to be deserted. Kate wasn't surprised – this part of town always quieted down at night, especially on weekday evenings like this one. There wasn't much around except office buildings and coffee shops that served to provide a steady stream of caffeine to the office workers.

If a person's resistance is bypassed or circumvented, their adaptive capacities can be overloaded, inducing feelings of desperation and helplessness.

Kate fished her smart phone out of the pocket of her grey suit jacket [18], [19]. Pressing a few buttons, she navigated through the on-screen menu to the Services option, then to Call a Taxi [20]. The device beeped at her, flashing the message: No signal available [21].

Kate swore, shoving the PDA back into her bag. The surrounding buildings must have been blocking the GPS signal [22]. She knew she needed to get to a more open area.

What a pain, she thought. They overload me with cases, expect me to stay late, and then the gadget they give me to get home doesn't work.

Although Kate was irritated more than anything else, there was a niggling sort of apprehension in the pit of her stomach. She felt alone – very alone, and not at all comfortable being by herself, at eleven in the evening, in a deserted place.

Shaking off the uneasiness, she berated herself. Get a grip, Kate. You're not a child.

As Kate strode off, a dark shadow detached from a nearby alleyway. It followed, silently, at a distance, keeping out of the dim pools cast by the streetlights.

Unfortunately, Kate didn't know which direction she should go to find a clear space for her phone to get a fix on her location.

If I keep heading the same way, she thought, I'm bound to find somewhere sooner or later.

The surrounding structures were slightly lower here, the taller office blocks just down the road. As Kate walked, the shadow some way behind flickered in the wind, as though it were wearing a long coat. It followed stealthily, steadily decreasing the distance between itself and Kate.

Suddenly, Kate's phone bleeped for attention. Kate pulled it out of her bag again and read the message on the screen: Signal acquired.

“Finally,” she breathed. Quick fingers navigated back to the Call a Taxi command. The phone gave a comforting reassurance that a taxi was on its way, with an estimated arrival time of less than a minute [23].

The shadow hung back, unsure, watching.

Within thirty seconds of making the call, a taxi veered out of nowhere and pulled to an abrupt stop alongside Kate. She opened the door and slid into the back seat.

As the taxi pulled away, the shadow shifted slightly and melted back into the darkness.

Liberty-The Husband and His Wife

The next day, the sun filtered into an east-facing bathroom window, where a man stood studying himself in the mirror.

Slight lines crinkled the skin near his eyes and mouth. His hair was still quite thick and healthy, but flecked with the salt-and-pepper grey of an aging man. Although Colin was well past his sixtieth birthday, he could have easily passed for a man in his fifties.

Suddenly, the telephone rang. Colin paused for a moment, listening – the ring only sounded in the bathroom [24]. The kitchen, bedroom, and lounge room were all silent.

“Even the damn phone knows where I am,” he muttered, shaking his head. He touched the hard lump of the RFID tag that was stitched into the hem of his shirt [25], [26]. “Helen, not again!”

Colin stabbed at an unobtrusive button on the bathroom wall, [27] and his reflection instantly gave way [28] to the face of an attractive woman with bobbed blonde hair [29] – Helen, his wife, calling from the airport in Hong Kong.

“Oh sweetheart, you look tired.” Helen sounded concerned.

Colin shrugged. “I don't feel tired. I think I just need to get some fresh air.”

“Open the window, then. It might make you feel better.”

Colin thought that what would make him feel better was a nice long walk without his wife checking up on him every five minutes.

“You haven't been to the cupboard yet to take your morning medicines,” Helen said.

“Why don't you stop pussyfooting around and just inject me with one of those continuous drug delivery things?” [30], Colin frowned.

Helen smiled. “Great idea,” she teased. “We could put a tracking chip in it too. Two birds, one stone” [31].

“At least then I wouldn't have to wear this stupid bracelet [32]. They're made for kids [33], Helen.” Colin knew his wife was joking, but the truth was that he often did feel like a recalcitrant child these days.

“Well,” Helen replied, “If you didn't insist on being so pig-headed, you wouldn't have to wear it. I was terrified when you collapsed. I'm not going to let it happen again. This way I know you're not gallivanting about without someone to look after you.”

“Ever considered that I can take care of myself? I'm not a child.”

“No, you're not. And you're not a young man either,” Helen admonished. “You need to accept that with your condition, it's just not safe to be going off by yourself. What if something happened to you? Who would know? How would we find you?”

“I feel like a prisoner in my own home, Helen. I can't even take the thing off without you knowing about it. You know they use these for prisoners?”

“Parolees, dear. And they're anklets.” She leaned in closer to the screen. “Someone needs to take care of you, Colin. If you won't, I'll have to do it myself.”

Colin sighed. “You just don't understand what it's like to be getting… older. Not being able to do everything you used to. Being betrayed by your own body. It's bad enough without you babying me along like some kind of octogenarian invalid.”

“Well, I guess that's the downside to marrying a woman almost twenty years younger than yourself,” Helen grinned.

“The only downside.” Colin smiled back at her, but his heart wasn't really in it. They had been through this argument countless times before.

He changed the subject. “Heard from our dear daughter lately? Or Scott?”

“Kate called me last night. She's doing well.”

“How's her new job?” Colin asked.

“Well, she says she enjoys it, but she's working very long hours,” Helen replied.

“And I bet you're worried about her being alone in the city at night for five minutes,” Colin said.

Helen gave a self-conscious smile. “It's not a very nice part of town. I'll feel much better about her working late when the firm moves closer to the inner city.”

“And Scott?”

“Haven't heard from him. He's back in Sydney now, though. I wish he'd call.”

“Maybe if you weren't always pestering him to marry his girl from Melbourne, he'd call more,” Colin grinned.

Helen glanced up, away from the screen.

“Sweetheart, I have to go – they've just given the final boarding call for my flight. Enjoy the rest of your day. I'll see you when I get home tonight.” She blew a rather distracted kiss at the screen, then it went blank.

Colin's shoulders sagged. Alone again.

He shuffled into the kitchen to make breakfast. Helen had left him skim milk and pre-packaged porridge oats.

“Wow,” he muttered. “Cosmic Blueberry or Bananarama? Such decisions.”

Just as Colin was finishing off the last few spoonfuls, the watch on his wrist emitted a low beep. He glanced at the screen: Low battery – critical.

Colin smiled. The device had been flashing low battery messages intermittently since yesterday evening. It had less than three days' standby time, and being on a business trip, Helen wasn't around to make sure it got recharged [34].

The screen on the little device winked out.

Munching on his porridge, Colin reached over to the cutlery drawer and took out the kitchen scissors. Very carefully, he snipped out a neat little rectangle from the hem of his shirt. The RFID tag came with it.

He swallowed down the rest of his breakfast and tossed the tag onto the counter.

Colin was going for a walk.

No alert went out to Helen. No neighbors came hurrying to see what he was doing. He reveled in the possibility of heading out without someone watching his every move [35].

Colin wandered off, his own man, if only for a morning.

Association-The Friends and Colleagues

“Hey Janet. Sorry I'm late.” Scott slid into the other seat at the table.

Janet sighed, pushing a latte and a sandwich towards him. She'd already finished her coffee. She gestured to her PDA. “These gadgets do everything. They compare our schedules, pick a place convenient to both of us, make sure there's something vegetarian on the menu for me, and book a table. Pity they can't get you here on time too.”

“I'm sure it's on the horizon,” Scott joked. “So how's life in the Sydney office?”

“All right. The weather makes a nice change. How about your parolees?”

Scott laughed. “There's a lot more of them. In Melbourne I had fifty or sixty cases at once. Now I've been allocated more than a hundred.” He bit into his sandwich. “With less parole officers able to handle more cases, I guess I'm lucky to have a job,” he continued with his mouth full [36].

Janet raised her eyebrows. “With a lot of women intolerant of bad table manners, you're lucky to have a girlfriend. I assume the workloads are greater because they use those chips here?”

“The caseload is greater, the workload is the same – yeah, because of the chips” [37]. He smiled. “It's crazy that New South Wales is already trialing these tracking implants, while Victoria's only recently got a widespread implementation of the anklets [38]. They've been around commercially for years. Mum's got Dad wearing a tracking watch now, for peace of mind after the whole angina scare.

“But the implants are much better,” Scott continued. “Who wants a chunky anklet or bracelet that makes you look like a collared freak? I'll bet it's really disconcerting having people stare at you suspiciously in the street, knowing that you're a criminal. It kind of defeats the purpose of parole – the idea is rehabilitation, reintegration under supervision. That's why the implants are so good – there's no stigma attached. No one can even tell you have one. And they're harder to remove, too.”

“I don't see what the big deal is,” Janet replied. “Why not just keep people under lock and key?”

“Resources. It costs a lot to keep someone imprisoned, but the cost drops significantly if you imprison them in their own home instead [39]. It's about overcrowding, too – jails everywhere have had an overcrowding problem for years [40].

Can it be considered reasonable to impinge upon the freedom of someone who is merely suspected of committing a crime?

“I also think electronic monitoring and parole are much better in terms of rehabilitation,” Scott went on. “People can change [41]. Often they've committed a fairly minor crime, then they go to prison, get mixed up with worse crowds [42]–[43][44]. It can be pretty rough in there. There is certainly a danger that by imprisoning people with ‘harder’ criminals, you run the risk of corrupting them further and exacerbating the problem [40].

“On parole, they can still go to work and earn money, be productive members of society, get their lives back [44], [45]. But they're watched, very closely – the tracking systems alert us if anything looks off. It's imprisonment without prisons.”

Janet smiled. “That's very Alice in Wonderland. When the Cheshire Cat disappears – how does it go? ‘I've often seen a cat without a grin, but a grin without a cat is the most curious thing I ever saw in all my life!'”

Scott laughed. “I suppose you could compare it to that.” He noted Janet's skeptical look. “It's not like we're sending people out of jails willy-nilly. There is a pretty thorough system in place to determine who gets paroled and who doesn't.”

“So how does that work?” asked Janet.

“Well, a while ago it was mainly based on crime-related and demographic variables. We're talking stuff like what sort of offense they're doing time for, the types of past convictions on their record, age, risk of re-offending” [46].

She nodded.

“Now a bunch of other things are looked at too,” he continued, finishing off his sandwich. “It's a lot more complex. Psychological factors play a big part. Even if someone displays fairly antisocial traits, they're still considered pretty low risk as long as they don't also show signs of mental illness” [47].

“So prisons are the new asylums?” Janet frowned.

“Not quite but I see your point,” Scott admitted.

“What about terrorists?” Janet argued. “How can you guarantee that there won't be another incident like the Brisbane rail bombings”[48]?

“Like I said, anyone considered really dangerous is still kept in a regular prison,” Scott said. “All the major landmarks and places people congregate in Sydney are tagged anyway [49]. There's no way a convicted terrorist would get within a hundred meters of anything worth attacking.”

Janet raised her eyebrows, unconvinced. She thought of the newspaper reports about security breaches of public places that had been linked to professional cybervandals. As far as she was concerned, no new technology was the silver bullet.

Scott continued, “And you know that governmental powers now allow ‘persons of interest’ to be implanted as well.”

Janet shook her head. “I'm all for preventing terrorist attacks. But implanting people who haven't committed a crime? How far will they take it? What if the government decided that they should just track everyone, to be on the safe side?”

Scott shrugged. “I guess we just need to find a nice balance between personal freedom and national security.”

He glanced at his watch and pushed his chair back. “I need to get back to work,” he said apologetically.

Policing-The Officer and the Parolee

Scott paused on the landing in front of Doug's apartment and steeled himself. Doug was his last visit of the day. Scott was a fairly likeable guy and had a rapport with most of his cases, but Doug, convicted of aggravated sexual assault, was different [50].

Scott knocked on the door.

A few seconds passed, then it opened a fraction and a stubbled face peered out. Doug wore a stained long-sleeved shirt and ratty jeans.

“Scott,” he sneered. “So nice of you to drop by.”

“Let's just do this, Doug.”

Scott followed Doug into the living room. He pulled out a small device and waved it up and down the man's left arm. It beeped and Scott checked the screen.

“Your chip seems fine,” he said. “Just a routine check – we like to do one every now and then to make sure everything's okay. Congratulations on your new job, by the way. How do you like house painting?”

“My true bloody calling,” Doug leered.

“Er… great. Keep it up then. With good behavior like this you'll be done in no time.”

Scott felt relieved that he would no longer have to sift through Doug's daily tracking logs.

Doug just smiled.

Duplicity-The Victim

Doug waited more than two hours after Scott left before removing his shirt. He peeled off the electrical tape covering an ugly, ragged scar on his upper arm [51]. The scar wasn't from the chip's implantation. It was created by the deep cut Doug's heavily pierced cyberpunk friend had made to remove it [52].

The tiny chip – smaller than a grain of rice – was stuck to the back of the tape. Gingerly, Doug set it on the table in front of the TV and smiled. His chip was having a night in.

He was going out.

Doug pulled his shirt back on and shrugged into a long coat.

He knew there would be a young woman in a grey suit leaving her office soon. She worked at the law firm that was hot stuff in the news. Stupid really, he thought, that she's not afraid to wander the streets in that part of town at night, alone. A Smart girl like that should know better.

The stairwell was quiet. He slipped out into the darkness, a shadow among the other shadows.

He wanted to pay that attractive little lawyer a visit before she caught her taxi home.

Critical Analysis

Legal and Ethical Issues

According to Ermann and Shauf, our “ethical standards and social institutions have not yet adapted… to the moral dilemmas that result from computer technology” [53]. This has a great deal to do with the way Helen uses the LBS technologies available to her. In Liberty, Helen obviously cares about her husband and wants what is best for his health. She is willing to “help” Colin look after himself by monitoring him and restricting the activities she allows him to participate in, especially when he is alone. It is not too difficult to imagine this happening in the real world if LBS becomes commonplace. It is also conceivable that, for some people, this power could be held by a hospital or health insurance company. However, Helen fails to balance her concern for her husband's physical welfare with his need to be an autonomous being. Although LBS technologies are readily available, perhaps she has not completely thought through her decision to use these technologies to monitor Colin, even if it is ostensibly for his own good. It could even be seen as selfish.

The current climate is indicative of individuals' willingness to relinquish their privacy (or at least someone else's) for the sake of impenetrable security.

Consideration of legal issues is also important – it does not appear that there is any specific Australian legislation that covers the unique possibilities of LBS tracking. One situation that is likely to appear with more frequency is people using LBS technologies to monitor loved ones “for their own good.” Several issues are raised here. When is a person sufficiently impaired to warrant such monitoring? Should their consent be necessary? What if they are considered to be too impaired to make a rational decision about monitoring?

Autonomy is an important part of a person's identity. Resistance to a situation is often unconsciously employed to “preserve psychically vital states of autonomy, identity, and self-cohesion from potentially destabilizing impingements” [54]. If a person's resistance is bypassed or circumvented, their adaptive capacities can be overloaded, inducing feelings of desperation and helplessness. The natural reaction to this is to exert an immediate counterforce in an attempt to re-establish the old balance, or even to establish a new balance with which the individual can feel comfortable [54].

These ideas about autonomy, identity and resistance are demonstrated in Liberty through Colin. He experiences feelings of helplessness and vulnerability because of his loss of autonomy through constant LBS monitoring. His unsupervised walk can be seen as an attempt to redress the balance of power between himself and Helen. With these issues in mind, perhaps the kindest and least disruptive way to implement a monitoring program for an aging individual is to develop a partnership with that person. In this sort of situation, LBS tracking can be a joint process that “is continually informed by the goal of fostering… autonomy” [54].

Another significant legal and ethical issue is that of monitoring people such as those suspected of being involved in terrorist activities. As hinted at in Association, this is not mere fancy – the Australian Government, for example, has passed new anti-terrorism laws that, among other things, would give police and security agencies the power to fit terror suspects with tracking devices for up to 12 months [55].

This kind of power should give rise to concern. Can it be considered reasonable to impinge upon the freedom of someone who is merely suspected of committing a crime? For tracking implants especially, do governments have the right to invade a personal space (i.e., a person's body) simply based on premise?

Criminals give up some of their normal rights by committing an offense. By going against society's laws, freedoms such as the right to liberty are forfeited. This is retributivism (i.e., “just deserts”). The central idea is proportionality: “punishment should be proportionate to the gravity of, and culpability involved in, the offense” [40]. With no crime involved, the punishment of electronic monitoring or home detention must be out of proportion.

The threat of terrorist attacks has led the Australian Government to propose giving itself extraordinary powers that never could have been justified previously.

With measures such as those in Australia's counter-terrorism laws, there is obviously a very great need for caution, accountability, and review in the exercise of such powers. Gareth Evans, the former Australian Labor foreign minister, commented on the laws by saying:

“It is crucial when you are putting in place measures that are as extreme in terms of our libertarian traditions as these that there be over and over again justification offered for them and explanations given of the nature and scale of the risk and the necessity… it is a precondition for a decent society to have that kind of scrutiny” [56].

 

The July 2005 London subway bombings are the justification offered repeatedly by Australian Prime Minister John Howard for the new laws, reinforced by Australian Secret Intelligence Organization (ASIO) director-general Paul O'Sullivan. However, this “justification” ignores the reality that “the London bombers were ‘clean skins' who had escaped police notice altogether” [57]. Tagging suspicious people cannot keep society completely safe.

We do not make a judgment on whether pre-emptive control legislation is proper or not. We suggest, however, that the laws recently enacted by the Australian Federal Government (and agreed to by the Australian States) could be indicative of a broader trend.

John Howard said that “in other circumstances I would never have sought these new powers. But we live in very dangerous and different and threatening circumstances… I think all of these powers are needed” [58]. Could the same argument be used in the future to justify monitoring everyone in the country? If pre-emptive control is a part of government security, then widespread LBS monitoring could be the most effective form of implementation.

Without suggesting the potentially far-fetched Orwellian scenario where draconian policies and laws mean that the entire population is tracked every moment of their lives, there is an argument to be made that the current climate is indicative of individuals' willingness to relinquish their privacy (or at least someone else's) for the sake of impenetrable security.

Social Issues

Control emerges as a significant theme in the scenario Control Unwired. Even in LBS applications that are for care or convenience purposes, aspects of control are exhibited. The title reflects the dilemma about who has control and who does not. For example, in Vulnerability, Kate experiences a loss of control over her situation when her GPS-enabled smart phone does not work the way she wants it to work, but a sense of control is restored when it is functioning properly again. Helen has control over Colin in Liberty, and in turn Colin has little control over his own life. In both Association and Policing we see how Scott uses LBS every day as a control mechanism for parolees. Finally, in Duplicity, the question arises whether faith in this sort of control is fully justified.

Trust is a vitally important part of human existence. It develops as early as the first year of life and continues to shape our interactions with others until the day we die [59]. In relationships, a lack of trust means that there is also no bonding, no giving, and no risk-taking [60]. In fact, Marano states:

“[w]ithout trust, there can be no meaningful connection to another human being. And without connection to one another, we literally fall apart. We get physically sick. We get depressed. And our minds… run away with themselves” [59].

An issue that arises in Liberty is that of trust, recalling Perolle's notion of surveillance being practiced in low-trust situations and the idea that the very act of monitoring destroys trust [61]. We can see this happening in the Colin/Helen relationship. Helen does not trust Colin enough to let him make his own decisions. Colin does not trust Helen enough to tell her he is going out by himself, without any kind of monitoring technology. He resents her intrusion into his day-to-day life, but tolerates it because he loves his wife and wants to avoid upsetting her. Their relationship could be expected to become increasingly dysfunctional if there is a breakdown of trust. It is near impossible to predict the complex effects of LBS when used to track humans in this way, especially as each person has a different background, culture, and upbringing. However, if Perolle [61] and Weckert [62] are agreed with, these types of technological solutions may well contribute to the erosion of trust in human relationships – what would this entail for society at large? Freedom and trust go hand-in-hand. These are celebrated concepts that have been universally connected to civil liberties by most political societies.

Technological Issues

There is a widely held belief that it is how people use a technology, not the technology itself, that can be characterized as either good or bad. People often see technology as neutral “in the sense that in itself it does not incorporate or imply any political or social values” [63]. However, there are other researchers who argue that technology is not neutral because it requires the application of innovation and industry to some aspect of our lives that “needs” to be improved, and therefore must always have some social effect [63]. The LBS applications in the scenario all appear to show aspects of control. This would suggest that the technology itself is not neutral – that LBS are designed to exercise control.

Control Unwired seems to echo Dickson's argument that technology is not neutral because of its political nature: “dominating technology reflects the wishes of the ruling class to control their fellow men” [63]. We can certainly see elements of this idea in the scenario. All of the LBS functions depicted are about control, whether it be control over one's own situation (Vulnerability), caring control of a loved one (Liberty), or forced control over parolees (Association, Policing, and Duplicity). These situations imply that LBS is not neutral, and that the technology is designed to enhance control in various forms.

Some believe that technology is the driving force that shapes the way we live. This theory is known as technological determinism, one of the basic tenets of which is that “changes in technology are the single most important source of change in society” [64]. The idea is that technological forces contribute to social change more than political, economic, or environmental factors. The authors would not go so far as to subscribe to this strongest sense of technological determinism doctrine. The social setting in which the technology emerges is at least as important as the technology itself in determining how society is affected. As Braun says: “[t]he successful artifacts of technology are chosen by a social selection environment, [like] the success of living organisms is determined by a biological selection environment” [65]. Technologies that fail to find a market never have a chance to change society, so society shapes technology at least as much as it is shaped by technology. In this light, Hughes's theory of technological momentum is a useful alternative to technological determinism: similar in that it is time-dependent and focuses on technology as a force of change, but sensitive to the complexities of society and culture [66].

Technological potential is not necessarily social destiny [67]. However, in the case of LBS, it is plausible to expect it to create a shift in the way we live. We can already see this shift occurring in parents who monitor their children with LBS tracking devices, and in the easing of overcrowding in prisons through home imprisonment and parole programs using LBS monitoring.

As described previously, the threat of terrorist attacks has led the Australian Government to give itself extraordinary powers that never could have been justified previously. In this situation, LBS has enabled the electronic monitoring of suspicious persons; however, it is not the technology alone that acts as the impetus. Pre-emptive electronic tracking could not be put in place without LBS. Neither would it be tolerated without society believing (rightly or not) that it is necessary in the current climate.

The scenario also demonstrates that technology and society evolve at least partially in tandem. In Association, through the conversation between Scott and Janet, we learn that LBS tracking implants were not introduced simply because they were technically feasible. The reasons for their use were to reduce overcrowding in prisons and to mitigate the burden of criminals on the ordinary taxpayer. Social and economic factors, as well as technological ones, contributed to this measure being taken.

Although technology is not the sole factor in social change, and arguably not the most important, LBS are gaining momentum and are likely to contribute to a shift in the way we live. This can be seen both in the scenario and in real-life examples today. Throughout Control Unwired we can see LBS becoming an integral part of daily life. If this does happen, consideration must be given to what will happen if the technology fails – which it inevitably will. No technology is completely perfect. There are always shortcomings and limitations.

Examples of deficiencies in LBS technologies can be found scattered throughout the scenario. In Vulnerability, Kate appears to be over-reliant on LBS (why does she not simply call a taxi from her office before leaving?) and when the technology fails, it creates a potentially dangerous situation. Even more dangerous circumstances occur in Duplicity. Doug, a convicted sex offender, is able to break his curfew without anyone knowing. Perhaps measures could be implemented to stop such breaches from going undetected, but that would not stop them from happening altogether. One U.S. study found that about 75 percent of electronically monitored “walk offs” were re-apprehended within 24 hours [45]. That means a quarter went free for more than a day – plenty of time to commit other offences. And, although the offender may be caught and punished, it is difficult to remedy the damage done to an individual who is robbed or assaulted.

And no technology is completely fail-safe. Even electricity, a mainstay of daily life, can suddenly fail, with socially and economically devastating effects. Most of Auckland, New Zealand, went without power for five weeks during a massive blackout in 1998 [68]. A 1977 electricity outage in New York led to widespread looting, arson and urban collapse [69]. If we become as reliant on LBS as we have become on other technologies like electricity, motor vehicles, and computers, we must be prepared for the consequences when (not if) the technology fails.

Risk to the Individual Versus Risk to Society

Any technology can be expected to have both positive and negative effects on individuals and on the wider community. Emmanuel Mesthane of Harvard's former Technology and Society Program wrote: “[n]ew technology creates new opportunities for men and societies and it also generates new problems for them. It has both positive and negative effects and it usually has the two at the same time and in virtue of each other” [70]. From Table I, it is obvious that there is an inherent trade-off between the interests of the individual and the interests of society as a whole: the privacy of the individual is in conflict with the safety of the broader community. As G.T. Marx reflects, “[h]ow is the desire for security balanced with the desire to be free from intrusions” [71]? This work is certainly not the first to allude to this issue. For example, Kun has said that “perhaps one of the greatest challenges of this decade will be how we deal with this theme of privacy vs. national security” [72].

Table I  Positives and negatives of LBS for different user types

Table I Positives and negatives of LBS for different user types

The original contribution of this article is that the dilemma has been related specifically to LBS, under the privacy-security dichotomy [73]. Here, each side of the dichotomy is divided into three key components that combine to greatly magnify risk. Removing one or more components for each set decreases the privacy or security risk. Where more elements are present in conjunction, the risk is increased.

Significant privacy risk occurs when the following factors are present (Fig. 1):

Fig. 1 Privacy Risk

Fig. 1 Privacy Risk

  • Omniscience — LBS tracking is mandatory, so authorities have near-perfect knowledge of people's whereabouts and activities.

  • Exposure — security of LBS systems is imperfect, leaving them open to unauthorized access.

  • Corruption — motive exists to abuse location-related data. This includes unauthorized or improper changes, thus compromising content integrity.

It is not difficult to see why the danger in this privacy-risk scenario is so great. A nation with “all-knowing” authorities means that a large amount of highly sensitive information is stored about all citizens in the country. Security of electronic systems is never foolproof. And, where there is something to be gained, corrupt behavior is usually in the vicinity. The combination of all three factors creates a very serious threat to privacy.

Significant security risk occurs with the following conditions (Fig. 2):

  • Limitedness — authorities have limited knowledge of people's activities.

  • Vulnerability — security of individuals and infrastructure is imperfect.

  • Fraudulence — motive exists to commit crimes.

Fig. 2 Security Risk

Fig. 2 Security Risk

This security-risk dimension is a life situation that people have to contend with in the present day: limitedness, vulnerability, and fraudulence. Law enforcement authorities cannot be everywhere at once, nor can they have instant knowledge of unlawful activity. Security of infrastructure and people can never be absolute. In addition, there are always individuals willing to commit crimes for one reason or another. These factors merge to form a situation in which crimes can be committed against people and property relatively easily, with at least some chance of the perpetrator remaining unidentified.

As mentioned above, the security-risk half of the dichotomy typifies our current environment. However, the majority of society manages to live contentedly, despite a certain level of vulnerability and the modern-day threat of terrorism. The security-risk seems magnified when examined in the context of the LBS privacy-security dichotomy. LBS have the potential to greatly enhance both national and personal security, but not without creating a different kind of threat to the privacy of the individual. The principal question is: how much privacy are we willing to trade in order to increase security? Is the privacy-risk scenario depicted above a preferable alternative to the security-risk society lives with now? Or would society lose more than it gains? And how are we to evaluate potential ethical scenarios in the context of utilitarianism, Kantianism, or social contract theory?

Major Implications

The issues of control, trust, privacy and security are interrelated (Table II). As discussed above, increased control can impair or even destroy trust; i.e., there is no need to be concerned with trusting someone when they can be monitored from afar. In contrast, increased trust would normally mean increased privacy. An individual who has confidence in another person to avoid intentionally doing anything to adversely affect them, probably does not feel the need to scrutinize that person's activities.

Table II  Unanswered questions in LBS

Table II Unanswered questions in LBS

Privacy requires security as well as trust. A person's privacy can be seriously violated by a security breach of an LBS system, with their location information being accessed by unauthorized parties. The other effect of system security, however, is that it enhances control. A secure system means that tracking devices cannot be removed without authorization, therefore, control is increased. Of course, control and privacy are mutually exclusive. Constant monitoring destroys privacy, and privacy being paramount rules out the possibility of LBS tracking. These relationships are summarized in Fig. 3.

4135773-fig-3-small.gif

The most significant implication of the work presented here is this: the potential for LBS to create social change raises the need for debate about our current path and consideration of future probabilities. Will the widespread application of LBS significantly improve our lives? Or will it have negative irreversible social effects?

Technological progress is not synonymous with social progress. Social progress involves working towards socially desirable objectives in an effort to create a desirable future world [65]. Instead of these lofty ideals, technological progress is based on what is technically possible. However, there is a difference between what can be done and what should be done – the relentless pursuit of technological advancement for its own sake is arguably a pointless exercise. Do we really need more electronic gadgets in our daily lives? As Kling states:

“I am struck by the way in which the news media casually promote images of a technologically rich future while ignoring the way in which these technologies can add cost, complexity, and new dependencies to daily life” [74].

In the Association section of the scenario, Janet's comment about Alice's Adventures in Wonderland can be seen as more than just a superficial remark. In the book, Alice has the following conversation with the Cat:

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don't much care where—” said Alice.
“Then it doesn't matter which way you go,” said the Cat [75].

Martin Gardner says that John Kemeny, author of A Philosopher Looks at Science, compares Alice's question and the Cat's answer to the “eternal cleavage between science and ethics” [75]. The same could be said of LBS technologies and possible future applications. New technologies provide exciting opportunities, but human decision-making based on social and ethical considerations is also needed in determining the best path to follow. Technology merely provides us with a convenient way to reach the destination. Without a sense of direction, where might we find ourselves? And where is the logic behind a “directionless” destination? There is clearly a serious need for thought and discussion about how we want LBS to be used in the wider context of its potential application.

Besides developing a sense of purpose for the use of LBS, we need to examine very carefully the possibility of the technology having unintended side effects such as the breakdown of trust and abuse of its application. Certainly, the potential effect of unplanned consequences should not be underestimated. According to Jessen:

“The side effects of technological innovation are more influential than the direct effects, and they have the rippling effect of a pebble hitting water; they spread out in ever enlarging concentric circles throughout a society to transform its behavior, its outlook, and its moral ethic” [76].

Of course not all secondary effects can be foreseen. However, this does not mean that deliberating on the possible consequences is without some genuine worth. Surely some form of preparation to deal with adverse outcomes, or at least to notice them before they become irreversible, is better than none at all.

The scenario Control Unwired has demonstrated the potential of LBS to create social change. It has also shown that the use of LBS may have unintended but long-term adverse effects. For this reason the major recommendations are cross-disciplinary debate and technology assessment using detailed scenario planning. We need to critically engage with LBS, its potential applications, and possible side-effects instead of just blindly hurtling along with the momentum of technology-push.

References

1. J. E. Jacobs, "Social implications of computers: ethical and equity issues", ACM Outlook, pp. 100-114, 1988.

2. C. Huff, "Practical guidance for teaching the social impact statement", ACM CQL, pp. 86-89, 1996.

3Cases on Engineering Ethics Practice, Oct. 2006, [online] Available: http://www.onlineethics.org/ eng/cases.html.

4. A. Ghafarian, "Integrating ethical issues into the undergraduate computer science curriculum", ACM CCSC - JCSC, vol. 18, no. 2, pp. 180-188, 2002.

5. J. A. Rohn, "Usability in practice: Alternatives to formative evaluations — Evolution and revolution", CHI 2002, pp. 891-897, 2002.

6. R. G. Epstein, The Case of the Killer Robot, NY, New York:Wiley, 1997.

7. R. G. Epstein, "Stories and plays about the ethical and social implications of artificial intelligence", Intelligence, pp. 17-19, 2000.

8. R. G. Epstein, "Latest developments in the killer robot computer ethics scenario", ACM SIGCSE, pp. 111-115, 1995.

9. R. G. Epstein, "In-depth! The Silicon Valley Sentinel-Observer’s public affairs NetTV program presents: Toxic knowledge", Proc. Ethics and Social Impact Component on Shaping Policy in the Information Age, pp. 86-91, 1998.

10. J. M. Artz, "The role of stories in computer ethics", Computers and Society, pp. 11-13, 1998.

11. M. Lindgren, H. Bandhold, Scenario Planning: The link between future and strategy, NY, New York:Palgrave-Macmillan, pp. 21, 2003.

12. J. P. Martino, "A review of selected recent advances in technological forecasting", Technological Forecasting and Social Change, vol. 70, no. 8, pp. 719-722, 2003.

13. M. Godet, "The art of scenarios and strategic planning: Tools and pitfalls", Technological Forecasting and Social Change, vol. 65, no. 1, pp. 3-11, 2000.

14. M. Lindgren, H. Bandhold, Scenario Planning: The link between future and strategy, NY, New York:Palgrave Macmillan, pp. 38-168, 2003.

15. P. Hogan, On Interpretation: Meaning and Inference in Law Psychoanalysis and Literature, GA, Athens:Univ. of Georgia, pp. 9, 1996.

16. K. Michael, M. G. Michael, "Microchipping people: The rise of the Electrophorus", Quadrant, vol. 49, no. 3, pp. 22-33, 2005.

17. S. Žižek, "Cyberspace or the unbearable closure of being" in Endless Night: Cinema and Psychoanalysis Parallel Histories, CA, Berkeley:Univ. of California Press, pp. 92-102, 1999.

18. G. Aquino, "Dialled in: GPS cell phones", PC World, Mar. 2004, [online] Available: http://www. pcworld.com/article/id,115273-page,1/article.html, accessed.

19CF Card GPS for PDA’s, Sept. 2005, [online] Available: http://www.filesaveas.com/gpscfcard.html.

20Agis develops real time location service for savvy mobile phone users, Apr. 2005, [online] Available: http://www. asiagis.com.sg/agis/pdf/Navfone_Press.pdf.

21How GPS Works, Sept. 2005, [online] Available: http://www.trimble. com/gps/whygps-anim00.shtml.

22. S. Dooley, P. Gough, "Software integration lowers the cost of A-GPS", Wireless-Web, 2005, [online] Available: http://wireless.iop.org/articles/feature/6/8/7/1, accessed.

23. N. Pikabea, GPS for taxis, May 2004, [online] Available: http://innovations report. de/html/berichte/kommunikation_medien/beri cht29210.html, accessed.

24. B. Gates, The Road Ahead, NY, New York:Viking, pp. 218-219, 1995.

25Silent Commerce Chips Away at Star City Casino Wardrobe Worries, [online] Available: http:// www.accenture.com/Global/Services/By_Subject/Radio_Frequency_Identification/Client_su ccesses/StarCityCasino.htm.

26TAGSYS RFID Products, Sept. 2005, [online] Available: http://www.tagsysrfid.com/eng/ rfid/tagsys_produit/rfid_tag-4-1-1.html, accessed.

27. K. J. Lin, T. Yu, C. Y. Shih, "The design of a personal and intelligent pervasive-commerce system architecture", Proc. Second IEEE Int. Workshop on Mobile Commerce and Services, pp. 163, 2005.

28. M. Cable, The award-winning Flat Screen InvisiSound Mirror Frame makes home theater audio and video disappear, CA, Brisbane:Monster Press Room, Jan. 2005, [online] Available: http:// www.monstercable.com/press/press_result.asp?pr=2005_01_Frame.asp.

29. G. McArthur, "Videoconferencing over IP - The switch is on", Business Communications Rev., Sept. 2004, [online] Available: http://www.bcr.com/bcrmag/ 2004/09/p62.php.

30. M. Madou, BioMEMS/BioNEMS: Research in the laboratories of Marc Madou, 2003, [online] Available: http://www.inrf.uci.edu/research/marcmadou.p df.

31. H. Brøseth, H. C. Pedersen, "Hunting effort and game vulnerability studies on a small scale: A new technique combining radio-telemetry GPS and GIS", J. Applied Ecology, vol. 37, no. 1, pp. 182, 2000.

32. C. S. Miner, "Digital jewelry: Wearable technology for everyday life", CHI '01 Extended Abstracts on Human Factors in Computing Systems, pp. 45, 2001-Mar.

33Wherify's GPS Wherifone, Sept. 2005, [online] Available: http://www.wherify-wireless.com/univLoc.asp.

34GPS Marine Tracking Systems / Vessel Tracking, Sept. 2005, [online] Available: http:// www.environmental-studies.de/GPS/GPS-trac king-systems/Marine-Tracking/marine-tracking.html.

35.J. Dodd, "Parents & technology: The Wherify GPS personal locator offers help but fails to protect", General Computing, vol. 15, no. 2, pp. 35, 2004.

36Job Guide, 2005, [online] Available: http://jobguide.thegoodguides.com.au/statespecific.cfm?jobid =615&state_id=NSW.

37Electronic Monitoring, 1996, [online] Available: http://www. appa-net.org/about%20appa/electron.htm.

38Applied Digital Solutions Announces Working Prototype of Subdermal GPS Personal Location Device, 2003, [online] Available: http://adsx.com/news/2003/051303.html.

39NSWLRC Report: Sentencing, Oct. 2006, [online] Available: http://www.lawlink.nsw.gov.au/lawlink/lrc/ll_lrc.nsf/pages/LRC_ip27chpl.

40. D. Brown, D. Farrier, S. Egger, L. McNamara, Criminal Laws, NSW, Leichhardt:Federation, 2001.

41Discretionary Parole, 2002, [online] Available: http://www. appa-net.org/about%20appa/discretionary_par ole.htm.

42. D. Sugg, L. Moore, P. Howard, Electronic monitoring and offending behavior: reconviction results for the second year of trials of curfew orders, 2001, [online] Available: http://www.probation. homeoffice.gov.uk/files/pdf/r141[1].pdf.

43Electronic Monitoring, 2004, [online] Available: http://www.corrections.govt.nz/public/aboutus/fact-sheets/reducingreoffending/electronic-monitoring.html.

44Chapter 7: Parole, 1996, [online] Available: http://www.lawlink.nsw.gov.au/lrc.nsf/pages/DP33CHP7, accessed.

45Keeping Track of Electronic Monitoring, 1999, [online] Available: http://www.justnet.org/pdffiles/ Elec-Monit.pdf.

46Parole Sex Offenders and Rehabilitation Programs, 2003, [online] Available: http://www.nswccl.org.au/docs/pdf/Parole_Sex Offenders_Note.pdf, accessed.

47. S. J. Lee, J. F. Edens, "Exploring predictors of institutional misbehavior among male Korean inmates", Criminal Justice and Behavior, vol. 32, no. 4, pp. 412-414, 2005.

48. "Terror tape targets Melbourne", The Australian, Sept. 2005.

49. K. Michael, A. Masters, "The advancement of positioning technologies in defense intelligence" in Applications of Information Systems to Homeland Security and Defense, U.K., London: IDG Press, pp. 193-201, 2005.

50. A. M. Piehl, B. Useem, J. J. DiIulio, Right-sizing justice: A cost-benefit analysis of imprisonment in three states, 1999, [online] Available: http://www.manhattan-institute.org/html/ cr_8.htm, accessed.

51. J. Scheeres, "Tracking Junior with a microchip", Wired News, 2003, [online] Available: http://www. wired.com/news/technology/0,1282,60771,00. html, accessed.

52. M. Millanvoye, "Teflon under my skin", UNESCO, 2001, [online] Available: http://www.unesco.org/courier/2001_07/uk/doss41.htm.

53. Computers Ethics and Society, NY, New York:Oxford Univ. Press, pp. vi, 2002.

54. E. Adler, J. L. Bachant, "Intrapsychic and interactive dimensions of resistance: A contemporary perspective", Psychoanalytic Psychology, vol. 15, no. 4, pp. 451-454, 1998.

55. N. Gilmore, "PM defends anti-terrorism laws", Lateline, 2005, [online] Available: http://www.abc.net.au/ lateline/content/2005/s1456384.htm.

56. "Terror laws shouldn't go overboard: Evans", The Sydney Morning Herald, 2005, [online] Available: http:// www.smh.com/au/news/national/terror-laws-shouldnt-go-overboard-evans/2005/09/27/ 1127586836368.html?from=moreStories.

57. M. Wilkinson, "Powers pave way for secret new world", The Sydney Morning Herald, pp. 1-6, Sept. 2005.

58. J. Kerr, "House arrest for terror suspects", The Sydney Morning Herald, pp. 1, Sept. 2005.

59. H. E. Marano, "Trust someone again", Psychology Today, vol. 31, no. 4, pp. 7, 1998.

60. T. Mizrahi, "How can you learn to trust again", Psychology Today, vol. 35, no. 2, pp. 12, 2002.

61. J. A. Perolle, "Computer-supported cooperative work" in Computers Surveillance and Privacy, MN, Minneapolis:Univ. of Minnesota Press, pp. 47-59, 1996.

62. J. Weckert, "Trust and monitoring in the workplace", Proc. IEEE International Symposium on Technology and Society, pp. 245, 2000.

63. J. Lipscombe, B. Williams, Are Science and Technology Neutral, U.K., Manchester:Univ. of Manchester, pp. 19, 1979.

64. L. Winner, Autonomous Technology: Technics-out-of-Control as a Theme in Political Thought, MA, Cambridge:M.I.T. Press, pp. 76, 1977.

65.E. Braun, Futile Progress: Technology's Empty Promise, U.K., London:Earthscan, pp. 21, 1995.

66. T. P. Hughes, Technological momentum in Does Technology Drive History?, MA, Cambridge:M.I.T. Press, pp. 101, 1994.

67. D. Lyon, Surveillance Society: Monitoring Everyday Life Berkshire, U.K.:Open Univ. Press, pp. 23-24, 2001.

68. "Power outage hits Auckland hours after crisis declared over", CNN World News, 1998, [online] Available: http://www.cnn.com/WORLD/9803/27/ auckland.outage/.

69. K. Westcott, "New York's good and bad blackouts", BBC News, 2003, [online] Available: http://news.bbc. co.uk/1/hi/world/americas/3154757.stm.

70. P. Bereano, "Technology is a tool of the powerful" in Computers Ethics and Society, NY, New York:Oxford Univ. Press, pp. 85, 2003.

71. G. T. Marx, Undercover: Police Surveillance in America, U.K., Berkeley:Univ. of California Press, 1988.

72. L. G. Kun, "Homeland security: the possible probable and perils of information technology", IEEE Engineering in Medicine and Biology, vol. 21, no. 5, pp. 28-33, 2002.

73. L. Perusco, K. Michael, M. G. Michael, "Location-based services and the privacy-security dichotomy", Proc. Third Int.Conf. on Mobile Computing and Ubiquitous Networking, 2006.

74. R. Kling, "The seductive equation of technological progress with social progress" in Computerization and Controversy: Value Conflicts and Social Choices, MA, Boston:Academic, pp. 22-23, 1996.

75. The Annotated Alice, NY, New York:Penguin, pp. 88, 1970.

76. P. Jessen, Technology Assessment: Creative Futures, MI, Ann Arbor:Univ. of Michigan Press, pp. 245-246, 1980.

Acknowledgment

The authors would like to acknowledge the significant contribution of Dr. M.G. Michael, Honorary Fellow at the School of Information Systems and Technology at the University of Wollongong and a member of the IP Location-Based Services Research Program.

Keywords

Privacy, Security, Ethics, Technological innovation, Social implications of technology, Animals, Mission critical systems, Radio frequency, Radiofrequency identification, Uncertainty, security of data, data privacy, mobile computing, privacy-security dichotomy, location-based services, scenario planning, security risk, privacy risk

Citation: Laura Perusco, Katina Michael, "Control, trust, privacy, and security: evaluating location-based services", IEEE Technology and Society Magazine, Vol. 26, No. 1, Spring 2007, pp. 4 - 16.