Social acceptance of location-based mobile government services for emergency management

Abstract

Location-based services deployed by governments can be used to assist people manage emergencies via their mobile handsets. Research delineating the acceptance of public services in the domain of emergency management has been scantly investigated in information systems. The main aim of this study is to assess the viability of location-based mobile emergency services by: (i) exploring the issues related to location-based services and their nationwide utilisation for emergency management; (ii) investigating the attitudinal and behavioural implications of the services; and (iii) examining the social acceptance or rejection of the services and identify the determinants of this acceptance or rejection. The results reveal that both attitude and perceived usefulness demonstrate a good prediction power of behavioural intention. Although perceived ease of use was found not to be a predictor of attitude, the results affirm its influence on perceived usefulness. The results also demonstrate the role of trust as the most influential determinant of individual perception of the usefulness of the services. Further, the results indicate that only the collection of personal location information, as a perceived privacy concern, had a significant negative impact on trust. Implications and future research are also discussed.

Highlights

► We investigate the public offerings of location-based services in the domain of emergency management.

► We examine the social acceptance or rejection of the services and identify the determinants of this acceptance or rejection.

► Attitude has a significant role in influencing behavioural intention towards using the services for emergency management.

► Trust is the most influential determinant of individual perception of the usefulness of the services.

1. Introduction

Emergencies and disasters have been part of our existence since the recording of history and will always be part of the continuing cycle of life and death. The 2001 terror attacks on New York City, the 2004 Indian Ocean Tsunami, the 2010 Haiti earthquake, and the 2012 Hurricane Sandy in the United States and Canada are just a few telling examples of what societies can endure. According to the United Nations’ International Strategy for Disaster Reduction Platform (2005), one of the main reasons for the loss of life in an emergency event is lack of early warning information. Therefore, in response to the lack of timely information, governments around the world have been exploring mobile phones as an additional feasible channel for disseminating information to people in emergency situations. The Short Message Service (SMS) and the Cell Broadcast Service (CBS) currently represent the feasible services that could be utilised for geo-specific emergency purposes as they can operate with almost all kinds of mobile handsets available today (Aloudat and Michael, 2010). We call such a service “location-based mobile government service for emergency management”.

Samsioe and Samsioe (2002) argued that an electronic service that has location capabilities should be able to fulfil the following three separate activities so as to be accurately defined as a location-based service (LBS): (i) estimate the location of the device; (ii) produce a service based on the estimated location; and (iii) deliver the location-enhanced service to that device. Accordingly, location-based services (LBS) for emergency management would involve the following: first, the location of the mobile handset can be estimated by using Cell-ID related technologies (Spiekermann, 2004); second, the mobile telecommunications network can produce an emergency information service, formed as an SMS or CBS, on events such as fire, flood, heavy rain, or hurricane, around the estimated location; and third, the warning message can then be sent to mobile handsets in the vicinity of the emergency to alert people.

After examining the related literature, it is clear that there is a marked scarcity of theoretical and empirical research that touches on the issues pertaining to the nationwide deployment of LBS for emergency management by governments. Furthermore, early studies have neglected the assessment of the acceptance and adoption of these services, along with their determinants, in the public domain. Accordingly, we seek to fill this gap by assessing the viability of location-based mobile government services within the national emergency management arrangements; Australia as a case study. To achieve this, we aim to investigate the social acceptance or rejection of location-based mobile government emergency services in Australia and identify the determinants of the acceptance or rejection.

The rest of this paper is organised as follows. Section 2 reviews the existing literature on the issues related to utilising LBS for emergency management. Section 3 develops a research model that demonstrates the acceptance of the services and their determinants. Section 4 describes the research method applied in this study. Section 5 reports the data analysis conducted to test the research model and Section 6 provides a discussion of the results. The contributions and limitations of this study and directions for future research are discussed in Section 7.

2. Issues related to LBS and emergency management

2.1. Visibility of LBS as a solution for emergency management

An individual may not be aware of the possible utilisation of location-based mobile phone services for emergency management and, therefore, it could be argued that the direct advantages or disadvantages of such utilisation would not be visible to him or her (Karahanna et al., 1999; Kurnia and Chien, 2003). An early explanation of these common phenomena came from Zajonc (1968) who defined it as the “mere exposure effect”. This describes the case where a person does not know or has little knowledge about a phenomenon, but by repeatedly exposing him or her to related stimulus objects, the repetition is capable of changing his or her beliefs towards the phenomenon either positively or negatively.

One of the key attributes of the Diffusion of Innovation (DOI) Theory by Rogers (1962) is observability, which was later segmented by Moore and Benbasat (1991) into two distinct constructs of demonstrability and visibility. The interpretation of visibility surmises that an innovation may not be new, but its benefits could be unknown to the public or even to governments. This is probably the case with LBS where these services have been available for several years, yet their general usage rates, specifically in the domain of emergency management are still extremely limited worldwide (Frost and Sullivan research service, 2007; O’Doherty et al., 2007; Aloudat and Michael, 2011).

2.2. The quality features of location-based emergency services

Service quality is defined as “a global judgement, or attitude, relating to the superiority of the service” (Parasuraman et al., 1988, p. 16).The quality of a service is, therefore, a result of subjective understanding, evaluation, and judgement of its merits. This understanding could, unfortunately, raise several judgement-related issues regarding the desired features of a service. Such issues could be easily augmented in the world of electronic services (e-services), such as LBS, especially in the absence of widely accepted and reliable instruments to quantifiably measure the quality features of an e-service. As a direct result of the absence of “agreed-upon” e-service quality models for all kinds of e-services, researchers have been compelled to use traditional service quality scales, such as the SERVQUAL model of Parasuraman et al. (1988), to measure the quality features of e-services (Liljander et al., 2002). In these traditional models however the interpersonal character of the delivery has the main impact on determining the quality of the service and, therefore, such models cannot truly be applied to the paradigm of e-services (Boshoff, 2007). Several studies suggested alternative instruments to measure e-service quality. Examples include Kaynama and Black (2000), and Zeithaml et al. (2000, 2002). But, Boshoff (2007) strongly argued that most of these proposed instruments had flaws since they were either too narrowly focused on a specific kind of e-services or failed to address the e-service from the perspective of the medium through which the service is provided or delivered.

In general, the quality of an e-service has been discerned as a multifaceted concept with different dimensions proposed for different service types (Zeithaml et al., 2002; Zhang and Prybutok, 2005). Unfortunately, in the context of LBS there is no existing consummate set of dimensions that can be employed to measure the quality features of the services and, subsequently, to measure their impact on an individual’s opinion about the utilisation of the services for emergency management. Therefore, defining a dimensional measurable set for location-based mobile phone emergency services would not be a straightforward task since there is almost no scholarly research regarding such a set. Nonetheless, the quality dimensions of a location-based mobile phone service that are expected to be relevant to emergency situations were adapted from Liljander et al. (2002), but were revised to accurately reflect the quality measurements of LBS in their new context (i.e. emergency management). The dimensions include reliabilityresponsivenesscustomisationassurance/trust, and user interface.

The interpretation of the reliability concept follows Kaynama and Black (2000), Zeithaml et al. (2002) and Yang et al. (2003) as the currency and accuracy of the service information. To be considered reliable, the LBS needs to be delivered with the best possible service information, in the best possible state, and within the promised time frame (Liljander et al., 2002).

It is reasonable to postulate that the success of a location-based mobile phone emergency service depends on the ability of the solution provider to disseminate the service information to a large number of people in a timely fashion. Due to the fact that fast response to changing situations or to people’s emergent requests is considered as providing timely information, then timeliness is closely related to responsiveness (Lee, 2005). Therefore, investigating the responsiveness of the LBS would be relevant in this context. In general, examining the influence of currencyaccuracy, and responsivenessquality features on public opinion is expected to provide an insight into the extent to which LBS is generally considered sufficiently trustworthy to be utilised for emergency management.

The User interface dimension comprises factors such as aesthetics, which could not be evaluated in this exploratory research as respondents will not have access to the LBS enabled applications for emergency management. Customisation refers to the state where information is presented in a tailored format to the user. Since LBS is customised based on the location of the recipient’s mobile handset and also on the type of information being sent, customisation is already an intrinsic quality in the core features of location-based mobile phone emergency services. Therefore, the service quality dimensions that are expected to impact on the acceptance or rejection of location-based mobile phone emergency service, and accordingly are investigated include:

(1) Perceived currency: the perceived quality of presenting up-to-the-minute service information during emergencies.

(2) Perceived accuracy: the individual’s perception about the conformity of location-based mobile phone emergency service with its actual attributes of content, location, and timing.

(3) Perceived responsiveness: the individual’s perception of receiving a prompt information service in the case of an emergency (Parasuraman et al., 1988; Liljander et al., 2002; Yang et al., 2003).

2.3. Risks of utilising LBS for emergency management

Risk of varying types exists on a daily basis in human life. Koller (1988) believed that the nature of the situation determines the type of risk and its potential effects. In extreme situations such as emergencies, risk perceptions stem from the fact that the sequence of events and the magnitude of the outcome are usually unknown or cannot be totally controlled. Risky situations affect public confidence in technology used in such situations (Im et al., 2008). Uncertainty is a salient element of risk. Two distinct types of uncertainty have been differentiated by Bensaou and Venkatraman (1996): behavioural and environmental. In the context of LBS, behavioural uncertainty arises when users cannot ascertain the behavioural actions of other LBS parties, especially in extreme events. Risk perceptions may be projected here in several forms. First, a personal risk could be perceived because the LBS user may not be able to guarantee that the service provider will fulfil its expected role under extreme emergency conditions. Physical, psychological, and social risk perceptions could all be envisaged here as personal risks (Jacoby and Kaplan, 1972). Second, the decision might hold a perception of economic risk as it might lead to a monetary loss in private properties or assets. Third, a privacy risk may be perceived since there can be some concerns that the service provider would act opportunistically in emergencies in a way that would disclose valuable personal information to other parties, collect an inordinate amount of information, or use the collected information for purposes other than and beyond the emergency situation itself and without any prior consent from the LBS user.

The second type of uncertainty is environmental, which originates because emergencies, by their nature, cannot usually be predicted in their exact timing or severity. Thus, the LBS user may reasonably assume that in an extreme condition the underlying infrastructure supporting location-based mobile phone emergency services would be compromised as in any other telecommunications model. Several risk perceptions may also be projected here. First, a perception of a personal risk could originate when the user is uncertain whether or not the LBS infrastructure would cope with the emergency situation, which might lead to a potential risk to the personal safety or the safety of important others (i.e. family members, friends, or working companions). Again, physical, psychological and social risk perceptions could all be conceived here as personal risks (Jacoby and Kaplan, 1972). Second, a perception of a performance risk emanates from the possibility that the location-based emergency service may suffer or not perform as it is intended or desired. There may not be a perception of a direct personal risk to the individual’s own safety, but the idea of a service failure when it is most needed could increase concerns about service performance and resilience in emergencies. A third environmental risk could be perceived financially when there is a possibility of monetary loss of private property or assets due to service failure (Featherman and Pavlou, 2003).

2.4. Trust in LBS for emergency management

Trust has long been regarded as an important aspect of human interactions and mutual relationships. Basically, any intended interaction between two parties proactively requires an element of trust predicated on the degree of certainty in one’s expectations or beliefs of the other’s trustworthiness (Mayer et al., 1995; Li, 2008). In the “relatively” uncertain environments of e-services, including LBS (Kaasinen, 2005; Lee, 2005), uncertainty leads individuals to reason about the capabilities of LBS and its expected performance in emergency situations, which eventually brings them to either trust the service by willingly agreeing to use it or distrust the service by simply refusing to use it. In emergencies, individuals may consider the possible risks associated with LBS before using such services. Therefore, individuals are likely to trust the service and engage in a risk taking relationship if they perceive that the benefits of using LBS surpass its risks. However, if high levels of risk are perceived, then it is most likely that individuals will not have trust in the service and, therefore, will not engage in risk-taking behaviour by using it (Mayer et al., 1995). Consequently, it could be posited that trust in an LBS is a pivotal determinant of utilising the services for emergency management where great uncertainty is always present.

Trust has generally been defined as the belief that allows a party to willingly become vulnerable to the trustee after having taken the characteristics of the trustee into consideration, whether the trustee is another person, a product, a service, an institution, or a group of people (McKnight and Chervany, 2001). In our context, the definition encompasses trust in the government providing the service and trust in the technology and underlying infrastructure through which the service is provided (Carter and Bélanger, 2005). But, since willingness to use the location-based mobile phone emergency service is an indication that the person has considered the characteristics of both the service and the service provider, including any third parties, then it is highly plausible to say that investigating trust propensity in the service will provide a prediction of trust in both the service and its provider. The ability to provide such a prediction is based upon the importance of trust in the service and its underlying technologies, which has been clearly recognised before in acceptance and adoption literature (Kini and Choobineh, 1998; Kim et al., 2001). It could be argued, however, that trust should be examined with the proposition that the person knows or, at least, has a presumption of knowledge about the service, its benefits, and the potential risks associated with its utilisation. Nonetheless, it should be noted here that trust, per se, is a subjective interpretation of the actual trustworthiness of the service, given the current extremely limited utilisation of LBS in the domain of emergency management.

2.5. Privacy concerns pertaining to LBS emergency services

A classical and commonly quoted definition of privacy is that it is “the claim of individuals, groups, or institutions to determine for themselves when, how, and to what extent information about them is communicated to others” (Westin, 1967, p. 7).

In the context of LBS, the traditional commercial use of the services where a high level of detail about the user’s information is regularly available for the mobile service provider, may not raise much sensitivity towards privacy from users since the user’s explicit consent is a prerequisite for initiating the services in most cases. However, in emergencies, pertinent government departments and law enforcement agencies have the power to temporarily set aside the person’s right to privacy by not informing the person when, where, and for how long his or her personal information would be collected and/or monitored. This is based on the assumption that the consent of the person is already implied when location information is collected and/or monitored in emergency situations. Nonetheless, the idea of their personal information perennially availability to other parties and the belief that the individual has incomplete control or no control over the collection and/or surveillance, the extent, the duration, the timing, or the amount of information being collected could raise privacy concerns.

Good intentions are generally assumed in the relation between the government and its people, as governments usually communicate with the individuals in regard to what kind of data will be collected in emergencies, the extent of the collection, and when data will be collected. However, the implications of suspending consent of the person, even temporarily, may have long-term adverse effects and negative impacts on public perception of LBS solutions in general. This also has the potential to generate debate on the right of the individual in an absolute privacy state and the power of governments to dispense with that right of privacy (Perusco et al., 2006), even when the services are suggested by the government for emergency management purposes.

Four privacy concerns have been identified by Smith et al. (1996). They are collectionunauthorised secondary use, errors in storage, and improper access of the collected data. These concerns can be examined when investigating privacy concerns pertaining to LBS (Junglas and Spitzmuller, 2006). Collection is defined as the concern that extensive amounts of location information or other personal identifiable information would be collected by the government when using LBS during emergencies. Unauthorised secondary use is defined as the concern that information is collected for emergency purposes using LBS, but will ultimately be used for other purposes by the government without the explicit authorisation/consent of the individual for those other uses. Errors in storage describe the concern that the procedures taken to protect against accidental or deliberate errors in storing the location information while utilising LBS are inadequate. Improper access is the concern that the stored location information is accessed by parties in the government who do not have the authority to do so.

3. Research model and hypotheses development

A special adaptation of the Theory of Reasoned Action (TRA) (Fishbein and Ajzen, 1975; Ajzen and Fishbein, 1980) has been introduced by Davis (1986, 1989) in the form of a Technology Acceptance Model (TAM). According to TRA, the actual behaviour of an individual is determined by the individual’s intention to perform that behaviour. Such intention is the result of a joint function and/or influence of the subjective norms and the individual’s attitude towards engaging in that specific behaviour. TAM postulates that the usage of a technology (i.e. the actual adoption of the technology) can be predicted as behaviour by the individual’s intention to use the technology. The individual’s intention to use can be determined by his or her attitude towards using that technology. In TAM, both the attitude and intention are postulated as the main predictors of accepting the technology. The attitude is presumed to act as a mediator between the behavioural intention and two key influential beliefs: the perceived ease of use of the technology, and its perceived usefulness. TAM posits a direct link between perceived usefulness and behavioural intention. The model also posits that the perceived usefulness of the technology is directly influenced by the perceived ease of use of that technology.

Firstly and based on original TAM, the following hypotheses are formulated:

H1 Intention to use location-based mobile phone emergency services is positively related to attitude towards the services.

H2 Intention to use location-based services in emergencies is positively associated with perceived usefulness of the services.

H3 Attitude towards location-based mobile phone emergency services is positively associated with perceived usefulness of these services.

H4 Attitude towards using location-based mobile phone emergency services is positively associated with perceived ease of use of the services.

H5 Perceived ease of use of location-based services has a positive impact on perceived usefulness of the services for emergency management purposes.

Due to its parsimony and predictive power, TAM has been widely applied, empirically validated, and extended in many studies related to user acceptance of information technology, (see for example, Venkatesh, 2000; Venkatesh and Davis, 2000; Pavlou, 2003; Djamasbi et al., 2010; Mouakket and Al-Hawari, 2012). However, TAM is a general model that only provides overall information about technology acceptance and usage and does not specify the determinants of perceived usefulness and perceived ease of use as the two main beliefs included in the model. Therefore, further information is needed regarding the specific factors that may affect a certain technology’s usefulness and ease of use from individual perspective; as this can guide the design and development of the technology in the right direction (Mathieson, 1991). Indeed, Venkatesh and Davis (2000)suggested that user behavioural beliefs included in TAM could be affected by external variables. TAM also theories that the effects of external variables on intention to use are mediated by perceived usefulness and perceived ease of use (Venkatesh, 2000). As such, this research utilises visibility, perceived risk, perceived service quality, perceived privacy concerns, and trust as external factors affecting perceived usefulness and perceived ease of use in TAM.

The rest of the research hypotheses, presented in the following sections, are completely consistent with the structural formulation of TAM and do not violate in any way TAM’s grounded theory of TRA. All the hypothesised effects of the external constructs in the proposed research model would only be exhibited on the internal variables of the model (i.e. attitude and intention) through the full mediation of TAM’s internal beliefs (i.e. perceived usefulness and perceived ease of use). Any other arrangement beside those mentioned must be considered as another model, and not TAM.

3.1. Effect of perceived service quality on perceived usefulness

It could be posited that an individual perception of how useful LBSs are in emergencies would be highly influenced by the degree to which the individual perceives the services to be accurate, current, and responsive. The research conceptual model follows the same rationale as TAM, which postulates the perceived ease of use of a technology as a direct determinant of its perceived usefulness. Perceived ease of use is defined as the degree to which the individual believes that using LBS would be free of physical and mental effort (Davis, 1989). It is then justifiable to postulate that ease of use is directly related to technical service quality features of LBS since the individual’s evaluation of the service’s ease of use is closely associated with the convenient design of the service itself. This is perhaps why ease of use has been conceived by several researchers as one of the core dimensions of service quality (Zeithaml et al., 2002; Yang et al., 2003; Zhang and Prybutok, 2005). Building upon this and following the trails of TAM, the currency, accuracy, and responsiveness service quality constructs are theorised in the research model as direct determinants of the perceived usefulness of the location-based mobile phone emergency service. The following hypotheses are proposed:

H6a: There is a positive relationship between perceived responsiveness of the location-based mobile phone emergency service and its perceived usefulness.

H6b: There is a positive relationship between the perceived currency of the location-based mobile phone emergency service and its perceived usefulness.

H6c: There is a positive relationship between the perceived accuracy of the location-based mobile phone emergency service and its perceived usefulness.

3.2. Effect of visibility on perceived usefulness

Visibility is defined as the extent to which the actual use of location-based mobile phone emergency service is observed as a solution by the individual. Following a line of reasoning in former studies, such as Karahanna et al. (1999) and Kurnia and Chien (2003), the perception of an individual of the usefulness of the location-based mobile phone emergency service is positively related to the degree to which the service solution is visible to that individual. The following hypothesis is presented:

H7: Perceived usefulness of the location-based mobile phone emergency service increases as the visibility of the service application increases in the context of use.

3.3. Effect of perceived risk on perceived usefulness

As it is practically rational to believe that the individual would perceive different types of risk during an emergency situation, it might be quite difficult to examine each risk facet as being separate to others since they can be inextricably intertwined in such situations. Therefore, following the theoretical reasoning of Pavlou (2003), the perceived risks will be investigated as a higher-order uni-dimensional concept that embraces the two types of uncertainty identified earlier, that is, behavioural and environmental.

A number of former studies have shown that public perceptions of the inherent risks in e-services can be a pivotal barrier to the acceptance of the services (Campbell and Goodstein, 2001; Featherman and Pavlou, 2003; Pavlou and Gefen, 2004; Heijden et al., 2005; Lee and Rao, 2005; Xu et al., 2005; Junglas and Spitzmuller, 2006; Horst et al., 2007). But, more importantly, in the mobile telecommunications environment people feel more vulnerable to the risks of the underlying technologies since there are always concerns about information loss or delivery failure because of the nature of the media through which information is usually delivered to them (Bahli and Benslimane, 2004).

Based on the interpretations of Pavlou and Gefen (2004) and Heijden et al. (2005), the perceived risk is defined as the individual belief as to the potential loss and the adverse consequences of using location-based mobile phone emergency services and the probability that these consequences may occur if the services solution is used for emergency management. Bearing in mind the high degree of uncertainty that is usually associated with emergency situations, it is argued that perceptions of risk would have a highly negative impact on individual perception of the usefulness of location-based mobile phone emergency services. Therefore, the following hypothesis is presented:

H8: Perceived risks from using location-based mobile phone emergency services have a negative influence on the perceived usefulness of the services.

3.4. Effect of trust on perceived usefulness

Despite the general consensus of the existence of a mutual relationship between trust and risk, the two concepts should be investigated separately when examining their impact on public acceptance of LBS since they usually show different sets of antecedents (Junglas and Spitzmuller, 2006). Trust and perceived risks are primarily essential constructs when uncertainty is present (Mayer et al., 1995). However, each has a different type of interrelationship with uncertainty. While uncertainty augments the risk perceptions of using location-based mobile phone emergency services trust reduces the individual’s concerns regarding the possible negative consequences of using the services, thus alleviating the uncertainty around services performance. Therefore, since trust in the LBS can lessen uncertainty associated with the services, thus reducing the perceptions of risk, it is theorised that the perceived risk is negatively related to an individual’s trust in the service. This is in line with a large body of former empirical research, which supports the influence of trust on perceptions of risk (Gefen et al., 2003). In addition, by reducing uncertainty trust is assumed to create a positive perspective regarding the usefulness of the services and provide expectations of an acceptable level of performance. Accordingly, trust is postulated to positively influence the perceived usefulness of location-based mobile phone emergency services and, therefore, the following hypotheses could be proposed:

H9: Trust in location-based mobile phone emergency services positively influences the perceived usefulness of the services.

H10: Trust in location-based mobile phone emergency services negatively impacts the risks perceived from using the services.

3.5. Effects of perceived privacy concerns on usefulness, trust, and risk

Perceived privacy concerns are expected to have a direct negative impact on the perceived usefulness of LBS. In addition, other prominent constructs of trust and perceived risks are also assumed to have mediating effects on the relationship between perceived privacy concerns and perceived usefulness since both constructs (i.e. trust and perceived risks) could be reasonably regarded as outcomes of the individual assessment of the privacy concerns (Junglas and Spitzmuller, 2006). For instance, if a person is not greatly concerned about the privacy of his or her location information, then it is most likely that that individual trusts the services, thus perceiving them to be useful. On the other hand, if the perceptions of privacy concerns are high, the individual would probably not engage in a risk taking behaviour, due to the high levels of risks perceived, thus resulting in lower perceptions of the usefulness of the services. Building on this reasoning, the perceived privacy concerns are theorised in the research model as direct determinants of both trust and risk perceptions. While the perceived privacy concerns are postulated to have a negative impact on trust in the services, they are theorised to positively influence on the perceived risks associated with using LBS.

Reductions in information privacy are generally the product of two types of activities: observing information about the person and sharing this information with others (Bridwell, 2007). Accordingly, the influences of two pertinent privacy concerns (i.e. collection and unauthorised secondary use) on individual acceptance of location-based mobile phone emergency services are proposed as the bases for the following hypotheses:

H11a: Collection as a perceived privacy concern negatively impacts the perceived usefulness of location-based mobile phone emergency services.

H11b: Unauthorised secondary use as a perceived privacy concern negatively impacts the perceived usefulness of location-based mobile phone emergency services.

H12a: Collection as a perceived privacy concern has a negative impact on trust in location-based mobile phone emergency services.

H12b: Unauthorised secondary use as a perceived privacy concern has a negative impact on trust in location-based mobile phone emergency services.

H13a: Risks perceived from using location-based mobile phone emergency services are positively associated with perceived privacy concerns about collection.

H13b: Risks perceived from using location-based mobile phone emergency services are positively associated with perceived privacy concerns about unauthorised secondary use.

Based on the proposed hypotheses, the research conceptual model is illustrated in Fig. 1.

Fig. 1. A conceptual model of location-based mobile phone emergency service acceptance.

4. Research method

4.1. Research context

Rapid proliferation of mobile platforms presents a real opportunity for the Australian Government to utilise location-based mobile services as an integral information lifeline in times of perils, especially now when Australians are becoming increasingly mobile; not only in the way they move, live and communicate, but also in the way they acquire information relevant to their whereabouts and various daily life activities. Utilising location-based services for emergency management has the potential to augment the overall levels of safety by increasing the situational awareness among people about threatening events in their immediate surrounds, thus helping to avoid unnecessary casualties, injuries or damages. The value of location-based mobile emergency services in Australia was realised after the Australian Federal, States and Territories Governments announced in 2009 their future intentions to utilise mobile services under the National Emergency Warning System (NEWS).

Location-based mobile services could help to find a solution to one of the intrinsic issues in most conventional emergency warning systems today that usually require the recipient to be anchored to an information channel at the time information is disseminated for one to receive an alert or warning message. However, given the current lack of research, not only in Australia but also globally, in relation to understanding the various implications of a nationwide utilisation of various mobile government location-based services for personal safety and public warning purposes, this study contends the pressing need for such a research. The results of this study would be of high importance to government, business and society at large.

4.2. Survey questionnaire

As attitude and intention are postulated as the main predictors of social acceptance or rejection of location-based mobile government emergency services, the researchers used a survey to examine and understand public attitudes and intentions towards using the services once the services are introduced by the Australian Government for emergency management solutions in the future. A five-point Likert rating scale was used in the questionnaire part of the survey. Each set of items or questions reflects a construct in the research conceptual model. The items and the studies from which the items were adapted can be found in Appendix A. At the end of the questionnaire, an open-ended question was used to solicit general comments, opinions, and additional information from the survey participants about the services.

4.3. Survey testing

Validating and testing the survey are essential processes in empirical information systems research (Straub, 1989). The survey testing was carried out in three separate steps. First, an observational study was conducted with two persons, both with minimal knowledge about location-based services. This lack of former knowledge was necessary to calculate the average time needed for each person to become acquainted with the topic of the study and complete the survey. Second, 600 pilot surveys were randomly distributed by hand. The results of the pilot survey provided the researchers with the needed grounds for testing the survey before its large-scale deployment. Third, the internal reliability of the survey was evaluated. Reliability reflects the internal consistency of the scale items measuring the same construct for the selected data if the survey is redeployed on the same population. After revision, values for all measurements were higher than the common threshold value of 0.7. The evaluation results (i.e. Composite reliability and Cronbach’s alpha scores) of the internal reliability are presented in Table 1.

 

Table 1. The internal consistency and discriminant validity of the research constructs.

4.4. Main survey

After survey testing, around 1350 surveys were mailed randomly by hand to households in the Illawarra region and the City of Wollongong, New South Wales, Australia. Participants were asked to return their copies to the researchers in a reply-paid envelope provided with the survey within three weeks. Three hundred and four filled surveys were returned, yielding an acceptable 22.52% response rate. Amongst the 304 surveys, 59 were returned with comments in their open-ended question. However, after excluding all unusable partial responses, 290 surveys remained for the statistical analysis.

5. Data analysis

5.1. Description of the survey population

The data of the survey subjects were summarised and reported in aggregated form to maintain anonymity and confidentiality of all respondents. Out of the 290 replies to the survey, 110 were female (37.9%) and 180 were male (62.1%). The sample showed that 43.1% (N = 125) of the respondents were between 18 and 25 years old, 21.7% (N = 63) were between 26 and 34 years old, 18.6% (N = 54) were between 35 and 44 years old, 12.4% (N = 36) were between 45 and 54 years old, 3.4% (N = 10) were between 55 and 64 years old, and only two people who were aged 65 or above completed the survey.

5.2. The partial least squares analysis results

The Smart PLS 2.0 M3 software (Ringle et al., 2005) was used to analyse the two components of the research model together: the calculation of the measurement model (i.e. the outer model) and the assessment of the structural model (i.e. the inner model) (Barclay et al., 1995).

5.2.1. The measurement model

Assessment of measurement models should examine: (1) individual item reliability, (2) internal consistency, and (3) discriminant validity (Barclay et al., 1995). To evaluate item reliability, Barclay et al. (1995) recommended accepting only items with a loading of 0.707 or more. However, Hair et al. (2006) argued that items with a factor loading of 0.5 or more are significant enough and could be retained. The measurement items of the research model were loaded heavily on their respective constructs (reported in Appendix A), with all loadings considerably above 0.5, thus demonstrating adequate reliability for all items.

Because all reliability scores are above 0.7 (i.e. Composite reliability and Cronbach’s alpha scores reported in Table 1) the internal consistency criteria are also met (Nunnally and Bernstein, 1994).

The third step in assessing the measurement model involves examining its discriminant validity where two conditions should be met. First, the off-diagonal elements in Table 1represent correlations of all latent variables, whereas the diagonal elements are the square roots of the average variances extracted (AVE) of the latent variables. The AVE of any latent variable should be greater than the variance shared between the latent variable and other latent variables (Barclay et al., 1995), i.e. the diagonal elements should be greater than corresponding off-diagonal elements. Data shown in Table 1 satisfy this requirement. Second, the indicators should load more highly on their respective construct than on any other construct, with all correlations being significant at (p ⩽ 0.05) level at least. Data reported in Table 2 satisfy this condition.

Table 2. Cross loadings of the constructs and their items.

Table 1. The internal consistency and discriminant validity of the research constructs. Representative only. For full table see ScienceDirect, Elsevier.

5.2.2. The structural model

The general aim of the structural model is to give an explanation of the theorised relationships (i.e. the hypotheses) amongst the constructs. Fig. 2 illustrates the results and also shows R2 values obtained for each endogenous variable (i.e. intention, attitude, usefulness, risk, and trust) in the structural model.

Fig. 2. The partial least squares (PLS) results of the research conceptual model.

As shown in Fig. 2, the attitude towards using location-based mobile phone emergency services (b = 0.241, p < 0.00.1) was a significant predictor of behavioural intention to use the services, thus supporting H1. The perceived usefulness (b = 0.444, p < 0.001) was also an influential predictor of intention, thus validating H2. Both attitude and perceived usefulness demonstrated a good prediction power of intention with R2 at 0.365, indicating an explanation level at 36.5% of the variance of behavioural intention to use the services in the future. Perceived usefulness (b = 0.471, p < 0.001) was a significant predictor of attitude, thus validating H3. However, H4 was not supported since perceived ease of use did not have any significant influence on attitude. On the contrary, the effect of perceived ease of use (b = 0.273, p < 0.001) on perceived usefulness was significant, thus validating H5.

Both the perceived usefulness and perceived ease of use were able to explain more than 26% of the variance of the attitude towards using the service, while the antecedents of the perceived usefulness were able to explain more than 45% of its variance with R2 at 0.454.

The positive effects of trust on perceived usefulness (b = 0.341, p < 0.001) and negatively on perceived risk (b = −0.334, p < 0.001) were significant, thus validating H9 and H10, respectively. The privacy concern of collection (b = −0.175, p < 0.05) had a significant negative impact on trust in the service, which supports H12a.

Hypotheses H6a, H6b, H6c, H7, H8, H11a, H11b, H12b, H13a and H13b were all not statistically supported and, therefore, should be rejected.

5.3. The research conceptual model “goodness-of-fit”

The “goodness-of-fit” measure provides a reasonable indication of how well the sampled data fits the conceptual model being proposed (Gefen et al., 2000). However, since there is no direct “goodness-of-fit” measure generated by the partial least squares method, the measure can be generally estimated based on the adequacy of three main indexes that include (i) construct reliability (internal consistency) being above 0.7 for all the constructs of the conceptual model, (ii) high acceptable R2, and (iii) significant path coefficients (t-statistics) between the constructs (Barclay et al., 1995; Gefen et al., 2000).

As illustrated in Table 1, all the reliability scores from two separate tests (i.e. composite reliability test and Cronbach’s alpha scores) exceeded the 0.7 threshold, indicating high internal consistency for all constructs in the research model. The R2’s of the attitude and intention constructs were above 25%, a highly acceptable prediction level in empirical research (Arlinghaus and Griffith, 1995; Gaur and Gaur, 2006). Although 10 out of the 17 path coefficients were insignificant, the path coefficients to the main predictors of social acceptance of location-based mobile phone emergency services (i.e. attitude and intention) evinced extremely high significance levels at p < 0.001, with all coefficients to be above the 0.2 threshold indicated by Chin (1998) as implying a very meaningful relationship. Accordingly, the goodness-of-fit for this research model is established since the analysis of the two components of the partial least squares model; the measurement model and the structural model, have shown good results in almost all of the statistical tests performed.

6. Discussion of the findings

6.1. Perceived usefulness

The perceived usefulness of LBS for emergency management was the key driver behind the individual positive attitude towards using the services and his or her behavioural intention towards using the services in the future. The services were perceived to be highly useful despite (i) the risks that are perceived to be associated with the utilisation of this kind of electronic services, (ii) the probability of the excessive collection of personal location information by governments utilising the services, and (iii) the probability of the unauthorised secondary use of the collected information. The findings about the usefulness of LBS completely support the few earlier studies of LBS acceptance, such as Chang et al. (2006) and Junglas and Spitzmuller (2006), in which the role of usefulness was identified as a key driver of individuals’ attitudes and intentions towards using the services despite concerns about the privacy of their locational information.

Reflecting on the arguments presented earlier, the antecedents of perceived usefulness of LBS for emergency management were: perceived quality features of the service, trust in the service and service providers, the social risks perceived in utilising the service, the privacy concerns perceived with the utilisation of the service, visibility of the service application, and perceived service ease of use. These antecedents were collectively successful in explaining more than 45% of the usefulness variance of the LBS for emergency management. This high level of explanation in the service usefulness variance, standing at 45.4%, provides reasonable indicators of the issues that can be brought into focus if there is ever a pressing need by governments to improve public perception of the usefulness of LBS for emergency management, thus positively enhancing the overall social acceptance of the services.

6.2. Perceived ease of use

The findings evince weak evidence for the existence of any direct effect of perceived ease of use of LBS on the individual’s attitude towards using the services. Therefore, it could be suggested that the public, in general, are willing to accept the utilisation of LBS for emergency management regardless of how easy or difficult they are to use. Nevertheless, the findings did verify the high impact of perceived ease of use of the services on the perceived usefulness of the services, which provides a strong indication that people would perceive the services to be more useful if they were easier to use. Accordingly, there is a reasonable ground to suggest that the perceived ease of use of the services has an indirect influence on an individual’s attitude towards using the services through the mediating role of the perceived usefulness of the services.

In general, these findings can inform the design of LBS solutions. Designers will need to contrive service offerings with easy-to-use design interfaces once the services are utilised for emergency management, making the services as intuitive as possible to use during emergency situations, and comprehensible to everyone, including the young, the elderly, and the non-technologically inclined.

6.3. Visibility

In general, visibility of LBS emergency management solutions can provide the opportunity for many people to observe and judge the application of the services in the usage context, providing an effective and direct means for the individual to evaluate the usefulness of the services (Karahanna et al., 1999). However, the findings show that visibility of LBS solutions is not statistically significant in determining the perceived usefulness of the services. One rational explanation for this result is that LBS are not yet widely utilised for emergency management and, therefore, the individual cannot easily observe the application of the services in the context of emergencies. However, a highly intuitive rationale is that the specific usage context (i.e. emergency management) eliminates the importance of observing the application of the LBS by the public for these services to be judged as useful, since any means, service, or technology that is used for emergencies is perceived, by the very nature of these situations, to be useful, regardless of how visible its application to the public.

6.4. Quality features

Investigating the quality features of LBS emanated from the need to understand the acceptable degree of service quality anticipated by the prospective user when the service is utilised for emergency management, given the fact that limited knowledge about the actual service quality dimensions of the service is currently available. However, the findings demonstrate the insignificant role of the perceived quality features of LBS in shaping the individual perception of the usefulness of the services for emergency management. One can then speculate that the findings reflect uncertainty about the performance impact of LBS in terms of accuracy, currency, and responsiveness on the usefulness of the services, which can only be grounded in the fact that the services have not yet been widely implemented for emergency management. Even with the insignificant impact, in statistical terms, of the perceived service quality features on the perceived usefulness of the services, service quality features did actually emerge in the answers to the open-ended question as one of the important issues pertaining to the possible nationwide utilisation of the services for emergency management in Australia.

6.5. Perceived social risks

The social risks perceived from using LBS had an extremely weak impact on the perceived usefulness of the services. One explanation for this insignificant impact is that the public may perceive location-based services to be a part of the well-established mobile telecommunications networks, thus being mature enough to permit the useful delivery of safety information or warning notifications during emergency situations without any potential high risks. Taking this into consideration, the risks associated with the use of LBS for emergency management are actually part of the risks impacting the entire cellular network infrastructure and not necessarily only impacting these particular services.

6.6. Privacy concerns

Perceived privacy concerns, including excessive collection of personal location information and the unauthorised secondary use of that information, were both posited to play determining roles in (i) diminishing individual trust in LBS, (ii) augmenting the risks perceived from using the services for emergency management, and (iii) negatively impacting the perceived usefulness of the services. However, the findings indicate that only the collection of personal location information, as a perceived privacy concern, had a significant negative impact on trust in the services while all other effects are statistically too insignificant to be reported.

It is of particular interest that unauthorised secondary use was without any effect on trust, unlike the collection of personal location information. One reason might stem from the very nature of the act of collection itself. Usually, when location data for a location-based service is collected, it would be done automatically and the individual is typically unaware of this collection process (Junglas et al., 2008). Nonetheless, the findings suggest that this automated process of collection, even in emergency management settings, whether the process is known to the individual or not, signifies a personal lack of control for the individual over his or her collected data. This contributed to a greater degree towards distrusting use of LBS for emergency management than any other privacy concern.

The findings also reveal that the two privacy concerns, collection of personal location information and unauthorised secondary use, did not have any significant influence in increasing perception of social risks from using LBS for emergency management. This indicates that there is some threshold level that must be reached in the privacy concerns hierarchy of effects before such risks are perceived (Drennan et al., 2006). Nonetheless, some did perceive the privacy concerns to be important even in emergency situations, reflected in the significant negative impact of the collection of personal location information on trust in the services. Still, it is argued that the negative impact of privacy concerns will not be enough to prevent the public from engaging in a risk taking relationship when they perceive the benefits of utilising LBS for emergency management as surpassing their perceived risks.

Although the impacts of the collection and unauthorised secondary use on service usefulness are insignificant in statistical terms, the unexpected positive effects of the two constructs on usefulness (as illustrated in Fig. 2) imply that people are inclined to concede a degree of privacy in return for potential benefits in extreme situations such as emergencies. One explanation for this might be that people may perceive the outcome of the extensive collection of their locational data and the secondary use of that data in an emergency situation to be always in their favour when these activities (i.e. collection and secondary use) are practised by the government. The findings could also suggest that the context of emergencies is quite sufficient to produce an adverse impact on some of the “traditionally negative” aspects of information privacy concerns.

6.7. Trust

The definition of trust in LBS encompasses individual trust in the government controlling and providing the services and trust in the technology and underlying infrastructure through which the services are provided (Carter and Bélanger, 2005). The findings show the highly significant role of trust as the most influential determinant of individual perception of the usefulness of the services, suggesting that reducing uncertainty is indeed a key component in social acceptance of the services that deserves on-going attention from the government.

The findings about the significant role that trust plays strongly corroborate several previous studies about the need to investigate trust in empirical research of location-based services (Kaasinen, 2005; Junglas and Spitzmuller, 2006; Rao and Troshani, 2007).

The findings of this study also demonstrate the pronounced role of trust in ameliorating the social risks perceived to arise from using the LBS for emergency management, thus breaking down these barriers to the usefulness of the services. These particular findings suggest that besides the significant direct influence of trust on perceived usefulness of the services, trust also indirectly influences usefulness of the services through perceived risks. This validates the earlier conceptualisation of the trust-risk relationship in the research model in this paper, in which the directionality of the relationship flows from trust to perceived risks.

Consequently, what is of a greater concern to the success of an emergency service offering is that people can willingly bestow their trust on the service, trust the message that is provided to them by the service in the case of an emergency, and, most importantly, trust the government as the provider and controller of these services.

6.8. Analysis of the open-ended question

Amongst the 304 surveys, 59 were returned with comments in the open-ended question. Twenty-three people discussed “quality” and others discussed “product reliability” features. The emphasis in the comments was that without quality and reliability LBS solutions for emergency management would be useless. For example, one respondent wrote: “I have some concerns about the accuracy. Sometimes it may not direct you to the right position in the shortest available path”. Another 17 people said that they look forward to seeing LBS utilised for emergency management in the near future, but at the same time they were worried that their personal information would be used illegally or for other purposes. Further, 11 people mentioned the regulations and laws. They thought that the government should pay more attention to formulating laws and regulations surrounding the utilisation of the services if the government wants to apply LBS for emergency management. The final eight answers can be viewed as general hopes for such technologies as LBS to be utilised as soon as possible for emergency management in Australia. From the open answers, we can see that people cared about the quality, privacy, laws, and regulations related to LBS. Consequently, it is highly recommended that governments should take such opinions into consideration before applying LBS within emergency management arrangements.

7. Implications

This study adds to the scholarly literature in a relatively new area and in which there has been little research investigating the public offerings of location-based services in the domain of emergency management. Although there have been several studies about the technical feasibility aspects for utilising LBS as advanced mobile government location-enabled applications for personal safety and public warning purposes there is however scant theoretical and empirical research concerning the investigation of different aspects in relation to the utilisation of the services in the domain of emergency management, such as the behavioural, social, technical, administrative, regulatory, and legal aspects. This is an evident gap in the current body of research and this paper makes a significant contribution to that body of research.

The findings of this paper also contribute to the current theories and models of acceptance by providing empirical evidence to support the retention of the attitude construct in the attitude-behaviour relationship of TAM. This is grounded upon the significant role of attitude in influencing behavioural intention towards using LBS for emergency management, thus enhancing the overall ability to predict social acceptance or rejection of these services. The findings completely validate, and are in line with, several social psychology studies in which the role of attitude as an important determinant of behavioural intention has been strongly emphasised (Ajzen, 2002; Dennis et al., 2004). The retention of attitude as one of the endogenous constructs within the nomological structure of TAM provides an additional momentum to arguments seeking to preserve the theoretical integrity of the Model and, consequently, the Model’s base theory of TRA. At the same time, this paper strongly signals the importance of examining individual attitude in acceptance research, especially when studying social acceptance of new government initiatives and services.

Although the research model was explicitly employed to predict social acceptance of location-based mobile government services for emergency management, the model can be easily viewed as a generic model that can credibly serve as a candidate model for future studies to predict acceptance of location-based services in other usage contexts, applications, scenarios, and/or settings. This is because all of the theorised constructs of the model are highly relevant to the intrinsic characteristics of LBS. Examples would include law enforcement applications of LBS, such as investigating their surveillance implications, capturing location-based evidence, and the social and ethical issues pertaining to the application of the services for counter-terrorism, arrest support, traffic violations, or riot control.

An issue that has been largely overlooked in the acceptance literature in respect to LBS is the quality features of these services, and the degree to which the perceptions of service quality actually impact on accepting the services. One of the main contributions of this study is the introduction of a highly justifiable theoretical foundation for investigating perceived quality features of LBS in the context of emergency management. Given the general lack of dedicated measurements for such quality features in the literature, it is argued that the service quality scales that were developed in this research, including accuracy, currency, and responsiveness, could be naturally adapted when researching acceptance of LBS, not only in the context of emergencies, but also in other usage contexts and settings.

Several opportunities for further empirical research have emerged from this study, but the most worthwhile is an examination of public opinion after national implementation and deployment of LBS for emergency management. Such a study could investigate, in the long term, how and why the determinants of acceptance change or reshape after the adoption and diffusion of the services, and whether or not the relationships between these determinants are consistent over time. This type of work reflects arguments by Karahanna et al. (1999) of the need to examine and, at the same time, differentiate between the beliefs of the individual in the pre-adoption phase (symbolic adoption), where one’s assessment leads into one’s decision to accept or reject the LBS for emergency management, and those beliefs in the post-adoption phase (actual adoption), which is marked by actual usage or take-up of the services.

Another interesting starting point for further research is the contradictions that were found between this study and most of the previous research about the influence of privacy concerns on an individual’s acceptance of LBS. Although it has been shown that the usage context of emergencies was quite sufficient to alleviate perceptions of privacy concerns, and despite the fact that it was not significant in statistical terms, a future cross-sectional comparative research taking into account several usage contexts is needed to further ascertain the role of the context of usage on the perceptions of location information privacy concerns.

8. Conclusions

Disasters and large scale emergencies that have the potential to disrupt the orderly manner of the civil society are considered national security challenges today. As Australians are becoming increasingly mobile in the way they acquire information about their whereabouts, the Australian government is contemplating the introduction of nationwide location-enabled mobile phone warning and alerting methods and techniques. Mobile government emergency applications, specifically location-based mobile phone emergency services are presented as a valuable addition within the envisaged emergency management apparatuses of the government for safeguarding people during emergencies anywhere and anytime. Indeed, governments have a responsibility to their citizens to inform and protect them against both conventional and unconventional threats, being natural or human-made.

Given the importance of this topic in the context of Australia and the fact that only very few studies tackled the utilisation of location-based mobile services in emergency management worldwide, this study aimed to investigate the social acceptance or rejection of location-based mobile government emergency services along with their determinants. The overall results of this study indicated that Australians are willing to accept such services in emergency situations. Indeed, our results indicated that behavioural intention is a function of both attitude and perceived usefulness. Perceived ease of use, according to results, has no influence on attitude. Further, the results confirmed that perceived usefulness is a strong direct predictor of attitude. Interestingly, the role of trust in determining individual perception of the usefulness of the services was found to be highly influential. Finally and from privacy concerns’ perspective, the results indicated that collection of personal location information is the only factor that has a significant negative impact on trust.

This study does not come without limitations and this can be addressed in future research. Although the response rate of the survey of this study was proven to be statistically adequate, a desirable goal was to obtain a higher response rate than the one acquired to have additional confidence in the generalizability of the findings. One possible solution for future research is to employ additional surveying techniques, such as the anonymous web-based surveying approach, along with the traditional mail survey approach to potentially increase the overall response rate. Further, as this study was designed and tested in the Australian context, future comparative cross-national studies between Australia and other countries would also be quite compelling. Such studies would shed light on the role of culture and government, such as the role and influence of government administration, in creating disparities in the factors determining the acceptance or rejection of location-based emergency services. Finally, due to time constraints, we could not afford conducting a longitudinal study although it may be useful here given that human behaviour is quite dynamic.

Appendix A. Measures and factor loadings of constructs∗

Appendix A. Measures and factor loadings of constructs∗ Partial table. See ScienceDirect>Elsevier for full table/appendix.

References

R. Agarwal, J. Prasad, Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30 (2) (1999), pp. 361-391

I. Ajzen, Residual effects of past on later behavior: habituation and reasoned action perspectives, Personality & Social Psychology Review (Lawrence Erlbaum Associates), 6 (2) (2002), pp. 107-122

I. Ajzen, M. Fishbein, Understanding Attitudes and Predicting Social Behavior, (first ed.), Prentice Hall, Englewood Cliffs, NJ (1980)

Aloudat, A., Michael, K., 2010. The application of location based services in national emergency warning systems: SMS, cell broadcast services and beyond. In: Proceedings of the National Security Science and Innovation, Australian Security Research Centre, Canberra, Australia, September 23, 2010, pp. 21–49 (September 23).

A. Aloudat, K. Michael, The socio-ethical considerations surrounding government mandated location-based services during emergencies: an Australian case study, M. Quigley (Ed.), ICT Ethics and Security in the 21st Century: New Developments and Applications (first ed.), IGI Global, Hershey, PA (2011), pp. 129-154

S.L. Arlinghaus, D.A. Griffith, Practical Handbook of Spatial Statistics, (first ed.), CRC Press, Boca Raton, FL (1995)

B. Bahli, Y. Benslimane, An exploration of wireless computing risks: development of a risk taxonomy, Information Management & Computer Security, 12 (3) (2004), pp. 245-254

D.W. Barclay, R. Thompson, C. Higgins, The partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration, Technology Studies: Special Issue on Research Methodology, 2 (2) (1995), pp. 285-309

Bensaou and Venkatraman, 1996, M. Bensaou, N. VenkatramanInter-organizational relationships and information technology: a conceptual synthesis and a research framework, European Journal of Information Systems, 5 (1996), pp. 84-91

C. Boshoff, A psychometric assessment of E–S–Qual: a scale to measure electronic service quality, Journal of Electronic Commerce Research, 8 (1) (2007), p. 101

S.A. Bridwell, The dimensions of locational privacy, H.J. Miller (Ed.), Societies and Cities in the Age of Instant Access (first ed.), Springer, Dordrecht, The Netherlands (2007), pp. 209-226

M.C. Campbell, R.C. Goodstein, The moderating effect of perceived risk on consumers’ evaluations of product incongruity: preference for the norm, Journal of Consumer Research, 28 (3) (2001), pp. 439-449

L. Carter, F. Bélanger, The utilization of e-government services: citizen trust, innovation and acceptance factors, Information Systems Journal, 15 (1) (2005), pp. 5-25

S. Chang, Y.-J. Hsieh, C.-W. Chen, C.-K. Liao, S.-T. WangLocation-based services for tourism industry: an empirical study, Ubiquitous Intelligence and Computing, Springer, Berlin, Heidelberg (2006), pp. 1144-1153

W.W. Chin, The partial least square approach to structural equation modeling, G.A. Marcoulides (Ed.), Modern Methods for Business Research (first ed.), Lawrence Erlbaum Associates, Inc., Mahwah, NJ (1998), pp. 295-336

G.A. Churchill, A paradigm for developing better measures of marketing constructs, Journal of Marketing Research, 16 (1) (1979), pp. 64-74

Davis, F.D., 1986. A technology acceptance model for empirically testing new end-user information systems: theory and results. Doctoral Dissertation, MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, viewed 4 September 2007.

F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13 (3) (1989), pp. 318-340

Dennis, A.R., Venkatesh, V., Ramesh, V., 2004. Adoption of Collaboration Technologies: Integrating Technology Acceptance and Collaboration Technology Research. Information Systems Department, Kelley School of Business, Indiana University, 17 November 2007. <http://sprouts.aisnet.org/174/1/tr142.pdf>.

S. Djamasbi, D. Strong, M. DishawAffect and acceptance: examining the effects of positive mood on the technology acceptance model, Decision Support Systems, 48 (2) (2010), pp. 383-394

J. Drennan, G.S. Mort, J. PrevitePrivacy, risk perception, and expert online behavior: an exploratory study of household end users, Journal of Organizational and End User Computing, 18 (1) (2006), pp. 1-22

M.S. Featherman, P.A. PavlouPredicting E-services adoption: a perceived risk facets perspective, International Journal of Human–Computer Studies, 59 (4) (2003), pp. 451-474

M. Fishbein, I. AjzenBelief, Attitude, Intention, and Behavior: An Introduction to Theory and Research, Addison-Wesley Publishing Co., Reading, Massachusetts (1975)

Frost and Sullivan Research Service, 2007. Asia Pacific Location-based Services (LBS) Markets, viewed 28 August 2007. <http://www.frost.com.ezproxy.uow.edu.au/prod/servlet/report-brochure.pag?id=P08D-01-00-00-00>.

A.S. Gaur, S.S. Gaur, Statistical Methods for Practice and Research: A Guide to Data Analysis using SPSS, (first ed.), Sage Publications, Thousand Oaks, CA (2006)

Gefen, D., Srinivasan Rao, V., Tractinsky, N., 2003. The conceptualization of trust, risk and their electronic commerce: the need for clarifications. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences. 6–9, January, 2009, viewed 6 January 2009, IEEEXplore Database.

D. Gefen, D.W. Straub, M. BoudreauStructural equation modeling and regression: guidelines for research practice, Communications of the Association for Information Systems, 4 (7) (2000), pp. 1-78

J.F. Hair, B. Black, B. Babin, R.E. Anderson, R.L. Tatham, Multivariate Data Analysis, (sixth ed.), Pearson Prentice Hall, New Jersey (2006)

Heijden, H.v.d., Ogertschnig, M., Gaast, L.v.d., 2005. Effects of context relevance and perceived risk on user acceptance of mobile information services. In: Proceedings of the 13th European Conference on Information Systems (ECIS 2005), Regensburg, Germany, May 26–28, 2005, viewed 15 September 2008, Google Scholar Database.

M. Horst, M. Kuttschreuter, J.M. Gutteling, Perceived usefulness, personal experiences, risk perception and trust as determinants of adoption of e-government services in The Netherlands, Computers in Human Behavior, 23 (4) (2007), pp. 1838-1852

I. Im, Y. Kim, H.-J. Han, The effects of perceived risk and technology type on users’ acceptance of technologies, Information & Management, 45 (1) (2008), pp. 1-9

Jacoby, J., Kaplan, L.B., 1972. The components of perceived risk. In: Proceedings of the Third Annual Conference of the Association for Consumer Research, Association for Consumer Research, Chicago, IL, November 1972, pp. 382–393.

Junglas, I., Spitzmuller, C., 2005. A research model for studying privacy concerns pertaining to location-based services. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS’05), Hawaii, January 3–6, 2005, viewed 22 August 2007, IEEEXplore Database.

Junglas, I., Spitzmuller, C., 2006. Personality traits and privacy perceptions: an empirical study in the context of location-based services. In: Proceedings of the International Conference on Mobile Business, Copenhagen, Denmark, June 2006, viewed 14 August 2007, IEEEXplore Database, p. 11.

I.A. Junglas, N.A. Johnson, C. Spitzmüller, Personality traits and concern for privacy: an empirical study in the context of location-based services, European Journal of Information Systems, 17 (4) (2008), pp. 387-402

Kaasinen, E., 2005. User acceptance of mobile services – value, ease of use, trust and ease of adoption. Doctoral Dissertation. Tampere University of Technology, Tampere, Finland, viewed 27 July 2007.

E. Karahanna, D.W. Straub, N.L. Chervany, Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs, MIS Quarterly, 23 (2) (1999), pp. 183-213

S.A. Kaynama, C.I. Black, A proposal to assess the service quality of online travel agencies, Journal of Professional Services Marketing, 21 (1) (2000), pp. 63-68

Kim, D.J., Braynov, S.B., Rao, H.R., Song, Y.I., 2001. A B-to-C trust model for online exchange. In: Proceedings of the Seventh Americas Conference on Information Systems, Boston, MA, 2–5 August, viewed 03 September 2008, pp. 784–787.

Kini, A., Choobineh, J., 1998. Trust in electronic commerce: definition and theoretical considerations. In: Proceedings of the 31st Annual Hawaii International Conference on System Sciences, vol. 4, viewed 13 November 2008, IEEE Xplore Database, pp. 51–61.

M. Koller, Risk as a determinant of trust, Basic & Applied Social Psychology, 9 (4) (1988), pp. 265-276

Kurnia, S., Chien, A.-W.J., 2003. The acceptance of online grocery shopping, paper presented to the 16th Bled eCommerce Conference, Bled, Slovenia, 9–11 June.

Lee, J., Rao, H.R., 2005. Risk of Terrorism, Trust in Government, and e-Government Services: An Exploratory Study of Citizens’ Intention to use e-Government Services in a Turbulent Environment, York Centre for International and Security Studies (YCISS), 10 December 2008, <http://www.yorku.ca/yciss/whatsnew/documents/WP30-Lee_and_Rao.pdf>.

T. Lee, The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce, Journal of Electronic Commerce Research, 6 (3) (2005), pp. 165-180

P.P. Li, Toward a geocentric framework of trust: an application to organizational trust, Management and Organization Review, 4 (3) (2008), pp. 413-439

V. Liljander, A.C.R. Van-Riel, M. Pura, Customer satisfaction with e-services: the case of an on-line recruitment portal, M. Bruhn, B. Stauss (Eds.), Jahrbuch Dienstleistungsmanagement 2002 – Electronic Services (first ed.), Gabler Verlag, Wiesbaden, Germany (2002), pp. 407-432

K. Mathieson, Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior, Information Systems Research, 2 (3) (1991), pp. 173-191

R.C. Mayer, J.H. Davis, F.D. Schoorman, An integrative model of organizational trust, Academy of Management Review, 20 (3) (1995), pp. 709-734

D.H. McKnight, N.L. Chervany, What trust means in e-commerce customer relationships: an interdisciplinary conceptual typology, International Journal of Electronic Commerce, 6 (2) (2001), pp. 35-59

G.C. Moore, I. Benbasat, Development of an instrument to measure the perceptions of adopting an information technology innovation, Information Systems Research, 2 (3) (1991), pp. 192-222

S. Mouakket, M.A. Al-Hawari, Investigating the factors affecting university students’ e-loyalty intention towards the Blackboard system, International Journal of Business Information Systems, 9 (3) (2012), pp. 239-260

J.C. Nunnally, I.H. Bernstein, Psychometric Theory, (third ed.), McGraw-Hill, New York (1994)

K. O’Doherty, S. Rao, M.M. Mackay, Young Australians’ perceptions of mobile phone content and information services: an analysis of the motivations behind usage, Young Consumers: Insight and Ideas for Responsible Marketers, 8 (4) (2007), pp. 257-268

A. Parasuraman, L. Berry, V. Zeithaml, SERVQUAL: a multiple-item scale for measuring service quality, Journal of Retailing, 64 (1) (1988), pp. 12-40

P.A. Pavlou, Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model, International Journal of Electronic Commerce, 7 (3) (2003), pp. 101-134

P.A. Pavlou, D. Gefen, Building effective online marketplaces with institution-based trust, Information Systems Research, 15 (1) (2004), pp. 37-59

Perusco, L., Michael, K., Michael, M.G., 2006. Location-based services and the privacy-security dichotomy. In: Proceedings of the Third International Conference on Mobile Computing and Ubiquitous Networking, London, 11–13 October, viewed 02 June 2007, Researh Online: University of Wollongong Database, pp. 91–98.

S. Rao, I. Troshani, A conceptual framework and propositions for the acceptance of mobile services, Journal of Theoretical and Applied Electronic Commerce Research, 2 (2) (2007), pp. 61-73

Ringle, C.M., Wende, S., Will, A., 2005, SmartPLS 2.0 (M3) Beta.

E.M. Rogers, Diffusion of Innovations, (first ed.), Free Press of Glencoe, New York (1962)

J. Samsioe, A. Samsioe, Introduction to location based services: markets and technologies

R. Reichwald (Ed.), Mobile Kommunikation: Wertschöpfung, Technologien, neue Dienste, Gabler, Wiesbaden, Germany (2002), pp. 417-438

H.J. Smith, S.J. Milberg, S.J. Burke, Information privacy: measuring individuals’ concerns about organizational practices, MIS Quarterly, 20 (2) (1996), pp. 167-196

S. Spiekermann, General aspects of location-based services, J. Schiller, A. Voisard (Eds.), Location-Based Services (first ed.), Elsevier, San Francisco, CA (2004), pp. 9-26

D.W. Straub, Validating instruments in MIS research, MIS Quarterly, 13 (2) (1989), pp. 147-169

United Nations’ International Strategy for Disaster Reduction Platform, 2005, United Nations’ International Strategy for Disaster Reduction Platform for the Promotion of Early Warning 2005, ‘Early Warning and Disaster Reduction’, paper presented to the World Conference on Disaster Reduction, Kobe, Hyogo, Japan, 18–22 January.

Van der Heijden, H., Verhagen, T., Creemers, M., 2001. Predicting online purchase behavior: replications and tests of competing models’. In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Maui, Hawaii, 3–6 January 2001, viewed 11 November 2007, IEEEXplore Database.

V. Venkatesh, Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model, Information Systems Research, 11 (4) (2000), pp. 342-365

V. Venkatesh, F.D. Davis, A theoretical extension of the technology acceptance model: four longitudinal field studies, Management Science, 46 (2) (2000), pp. 186-204

Xu, H., Teo, H.-H., Tan, B.C.Y., 2005. Predicting the adoption of location-based services: the role of trust and perceived privacy risk. In: Proceedings of the 26th International Conference on Information Systems, Las Vegas, USA, 31 December, viewed 20 August 2007, GoogleScholar Database, pp. 11–14.

Z. Yang, R.T. Peterson, S. Cai, Services quality dimensions of Internet retailing: an exploratory analysis, Journal of Services Marketing, 17 (7) (2003), pp. 685-700

R.B. Zajonc, Attitudinal effects of mere exposure, Journal of Personality and Social Psychology, 9 (2) (1968), pp. 1-27

Zeithaml, V.A., Parasuraman, A., Malhotra, A., 2000. A Conceptual Framework for Understanding e-Service Quality: Implications for Future Research and Managerial Practice. MSI Working Paper Series, Working Paper 00-115, Marketing Science Institute, Cambridge, MA, viewed 09 November 2007.

V.A. Zeithaml, A. Parasuraman, A. Malhotra, Service quality delivery through web sites: a critical review of extant knowledge, Academy of Marketing Science, 30 (4) (2002), p. 362

X. Zhang, V.R. Prybutok, A consumer perspective of E-service quality, IEEE Transactions on Engineering Management, 52 (4) (2005), pp. 461-477

Keywords: Location-based service, Emergency management, Social acceptance, Mobile government, Government deployment

Citation: Anas Aloudat, Katina Michael, Xi Chen, Mutaz M.Al-Debei, "Social acceptance of location-based mobile government services for emergency management", Telematics and Informatics, Vol. 31, No. 1, February 2014, Pages 153-171. DOI: https://doi.org/10.1016/j.tele.2013.02.002

The Social Implications of Location Based Social Networking

Abstract

images.jpg

Location based social networking (LBSN) applications are part of a new suite of emerging social networking tools that run on the Web 2.0 platform. LBSN is the convergence between location based services (LBS) and online social networking (OSN). LBSN applications offer users the ability to look up the location of another “friend” remotely using a smart phone, desktop or other device, anytime and anywhere. Users invite their friends to participate in LBSN and there is a process of consent that follows. Friends have the ability to alter their privacy settings to allow their location to be monitored by another at differing levels of accuracy (e.g. suburb, pinpoint at the street address level, or manual location entry). This paper explores the impact of LBSN upon society, especially upon trust between friends. The study used focus groups to collect data, and a qualitative approach towards analysis. The paper concludes that while there are a great many positive uses of LBSN, there are some significant problems with current applications, and that better design is required to ensure that these technologies are not exploited against a user to commit harm.

Section I. Introduction

Location Based Social Networking (LBSN) applications such as Google Latitude, Loopt and BrightKite enhance our ability to perform social surveillance. These applications enable users to view and share real time location information with their “friends”. With the emergence of this technology it is crucial to consider that “technology alone, even good technology alone is not sufficient to create social or economic value” [1]. Further to not contributing “sufficient” economic or social value, Kling and other scholars have identified that technologies can have negative impacts on society [2].

As location based social networking technologies are used between “friends” they have the potential to impact friendships, which are integral not only to the operation of society but also to the individual's well being [3]. By enabling real-time location tracking of “friends” LBSN puts LBS technologies in the hands of “friends” while also enhancing the experience of online social networking (OSN). In essence it meshes together the positives and negatives of OSN and LBS creating a unique domain of enquiry, forcing researchers to ask new questions. The purpose of this paper is to explore the implication of location based social networking upon “friendships”, with a particular focus on the impact upon trust.

Section II. Social Informatics

Social informatics aims to “explore, explain and theorize about the social technical contexts of information communication technologies” [4] with a view to developing “reliable knowledge about information technology and social change based on systematic empirical research, in order to inform both public policy issues and professional practice” [5]. In this way social informatics looks at the broader picture of the implementation of information communication technologies (ICT), to understand their operation, use and implications. By undertaking research on location based services from a social informatics perspective, the credible threats of the technology, and the circumstances they arise within and their severity can be identified. One of the key concepts underlying the approach of social informatics is that “information technology are not designed or used in social or technological isolation. From this standpoint, the social context of IT influences their development, uses and consequences” [6]. Social informatics takes a nuanced approach to investigating technologies and explores the bidirectional shaping between context and ICT design, implementation and use [4] as is depicted in Figure 1.

 

Figure 1. Bidirectional Shaping between Context and ICT Design

This approach, which combines the social aspects and the technical aspects of technology, has been found to be useful for understanding the social shaping and consequences of information communication technologies [7]. Examples of social informatics research include the vitality of electronic journals [8], the adoption and use of Lotus Notes within organizations [9], public access to information via the internet [10], and many other studies which employ a nuanced perspective of technology in order to understand the social shaping and consequences of ICT. Social informatics research also investigates new social phenomenon that materialize when people use technology, for example, the unintended effects of behavioral control in virtual teams [11]. Social informatics is not described as a theory, but as a “large and growing federation of scholars focused on common problems”, with no single theory or theoretical notion being pursued [4]. What social informatics does provide is a framework for conducting research. The framework of social informatics research is that it is problem orientated, empirical, and interdisciplinary with a focus on informatics.

Social informatics research in the area of LBS and OSN has highlighted the implications of using these technologies, including the concepts of trust, control, privacy and security. In addition OSN studies have exposed the ability of these technologies to alter and impact upon social relations. These studies provide a guide for concepts of interest to study in terms of the emergent technology of LBSN. Studies on LBSN however have not investigated the implications of the use of sophisticated LBSN applications, as are currently available. This research aims to address this gap by engaging in a social informatics based investigation of the implications of LBSN.

The problem addressed by this research is: under what conditions do location based social networking technologies enhance or reduce trust between “friends”? This research is concerned with the formulation of the socio-technical landscape that location based social networking applications exist within. The purpose of which is to understand the bidirectional relationship of society and technology and discover the circumstances within which trust will be negatively affected by the use of the technology. The nature of social informatics warns against a simplistic cause and effect approach to technology [12]. As such this research topic does not contain simple propositions that A causes B, rather it is developed upon a set of questions that reflect the interrelated social and technical aspects of the research.

  • Who are the users of the technology?

  • What is the technology used/misused for?

  • What relationships will it be utilized within?

  • How is trust categorized in these relationships?

  • What circumstance(s)/ context will it be used for?

  • What are the technological capabilities?

Section III. Focus Groups

A focus group is a “research technique that collects data through group interaction on a topic determined by the researcher” [13]. A key characteristic of focus groups is the insight and data produced by the interaction of the participants [14]. Focus groups are primarily used within preliminary or exploratory stages of a study [15]. This study uses focus groups to explore and discuss the use and implications of LBSN with the aim of generating a nuanced understanding of the socio-technical framework that LBSN operate within. The unit of analysis for the study was both at the individual and group level [16]. Focus groups enable individuals to express their “attitudes, beliefs and feelings” and the interaction between participants enables these views to be explored on a group level.

A. Design

Five focus groups were conducted for this study. This is justified on the basis that data becomes “saturated” with very little new content emerging after the first few sessions are conducted. The focus groups were conducted with students enrolled in a third year core subject covering professional practice and ethics, in the information technology and computer science curriculum at the University of Wollongong in the first week of May 2009. The background of these students means that it can be assumed that they are technology literate and able to grasp and understand (if not already using) emerging technologies. The focus groups were run in the tenth week of session, when it could be assumed that students were equipped with refined analytical skills to identify ethical and social aspects of technology. A further benefit in utilizing tutorial classes for the study is that the groups were pre-existing and therefore group members were able to easily relate, and also comment upon incidents which they shared in their daily lives [17].

Large focus groups can consist of between 15 to 20 participants and are appropriate for topics that are not emotionally charged. Larger groups are renowned for containing “a wide range of potential responses on topics where each participant has a low level of involvement” [13]. It should be noted that each focus group in this study had on average 15 active participants. The majority of participants were aged between 18 to 22 years old with several mature age students aged between 30 to 45 years old in each class. There was an approximate 60/40 mix of domestic and international students in each of the focus groups. The majority of international students came from China and Singapore.

B. Questions and Stimulus Material

Two moderators were used to conduct the focus groups. In order to maintain consistency between moderators and encourage a neutral approach to the focus group discussion a Question and Stimulus pack was created. The moderators played an active but neutral role, facilitating discussion and probing the participants in order to engage a deeper discussion of the issues. The purpose of developing the focus group questions and stimulus material was threefold; firstly to ensure conformity and standardization across all focus groups, secondly to provide direction and stimulus for the discussion and thirdly to provide participants with knowledge relevant to the focus group discussion. Furthermore the questions and stimulus material enabled the focus group to be structured into three sections of enquiry as demonstrated in figure 2.

 

Figure 2. Focus Group Sections

The purpose of the focus group questions was to obtain an understanding of the socio-technical framework of LBSN. In order to develop the questions the researcher reviewed the literature on LBS, LBSN, OSN and Trust, along with general media, including blogs and web articles on LBSN and Google Latitude. The questions developed focused upon:

  • Whether participants would use LBSN

  • Why would/(not) participants use LBSN

  • Who they would allow to see their location

  • Who they would like to know the location of

  • What issues surround the use of LBSN

  • The use of LBSN in relationships generally

  • The use of LBSN in relationships focusing on trust

In order to facilitate discussion, open-ended questions were used.

C. Data Analysis

The first stage of the data analysis is the transcription of the focus groups. The data was then analyzed by drawing “together and comparing discussions of similar themes … [to] examine how these relate[d] to the variables within the sample population” [17]. The method of analysis was manual qualitative content analysis. Qualitative methods are constructivist in approach [18]. They take an “interpretive, naturalistic approach to [their] subject matter” and explore things in “their natural setting attempting to make sense of, or interpret phenomena in terms of meaning people bring to them” [19]. In most cases, qualitative research results in the discovery of themes and relationships. Qualitative content analysis is concerned with capturing the richness and describing the unique complexities of data and as such provides understanding. This method allows the researcher to position, relate and ultimately understand the abstractly inferred content from a higher level processing of text and interaction.

Section IV. Results

A. Propensity to Adopt LBSN

There were three categories of response to the question would you use LBSN: adoption, non-adoption and those who had already adopted. Within each of these categories there was a spectrum of responses with participants identifying conditions of adoption or non-adoption to qualify their position. Overall most participants were in favor of non-adoption. Each of these categories of response is explored below.

1) Participants who had Adopted LBSN

Two participants had already adopted a LBSN application. In both cases the LBSN chosen was Google Latitude. One of the participants had ceased using Latitude while the other still had it installed. The participant who no longer used Latitude stated: “I got it and got rid of it because it was just weird”. When the participant was asked why it was “weird” they responded: “because it was like running in the background and you could either sign in and then it kept logging in all the time and I didn't want my brother knowing where I was all the time.” The only person who this respondent had listed as a “friend” on Latitude was his brother as at the time, Latitude was fairly new and the respondent did not think that many people used it.

The second participant who had adopted LBSN, and was still using it was doing so without any “friends”. This participant noted that Latitude: “really wears the battery down fast. I'll exit Google Latitude and it will ask- ‘would you like to continue sharing your location’ and I'll do that but then I'll have no battery left. So it is kind of useless. I still have it. Every now and then I'll log in and update my location. There is not a lot of point.” This second participant observed that without updating your location automatically there is “not a lot of point” to the application. The barrier to allowing automatic updates in the second participant's view was not the “weird” feelings it generated, but the battery power requirement. However this user had “no friends” registered to share their location with.

2) Participants who would Adopt LBSN in the Future

Of the participants who responded that they would adopt a LBSN like Google Latitude, most set out conditions of use to qualify their position while others identified availability of technology to support Latitude as a barrier to adoption. Some focus group participants were indifferent while others identified that they were open to adopting the technology without imposing any specific conditions. The conditions of use that participants specified were the accuracy of the device/application, the level of control over the visibility of their location and when the application would be used.

The condition of adoption based upon the accuracy of the device was expressed in terms of both high and low accuracy. In terms of low accuracy one participant expressed: “Participant: Depends how accurate. [Moderator: Accurate down to street level. |Participant: I think that would be kind of weird, I wouldn't like that.” This participant perceived street level accuracy as “weird”, and stated they would not adopt LBSN if it had such a high degree of accuracy. In terms of high precision accuracy one participant said that they would use a LBSN but “it would have to have a high quality network.” This participant had used LBSN before in China but experienced problems with it and after a “one day test … I didn't go ahead because the feasibility and reliability was not good, it had nothing to do with the privacy problems.”

Several participants would use LBSN upon the condition that they would be able to control the visibility of their location. Visibility was expressed in terms of controlling the level of location information (no information or street, suburb and state level) displayed, as well as control over who had access to the location information. In terms of visibility one participant commented that they would use it if they could specify: “[d]ifferent levels of visibility. Gaming friends at the state level; family — no problem because you trust them; girlfriend — no problem. Obviously the level of relationship trust would be the determining factor in how much access each person would be able to have.” This participant identified that the level of location information disclosed correlated to the different level of trust in each relationship. Other participants simply desired the ability to “easily block your location at all times” or “deactivate” the device.

In relation to who has access to location information one participant indicated that they would use it: “only on family. … Or if children are alone [and] I want to know where they are. But not with friends because if friends know where I am maybe they wonder why I am there and they ask and I have to answer like small, small details…” Identifying that some people do not want to disclose information about themselves to friends as it would open up a Pandora's box of questions about where they were and what they were doing and who they were with and so on. Another participant stated they would use LBSN but “confine it to a restricted group like … close family”, while another would use it if they had kids: “[i]fI have kids I will put it on their phone”.

Participants identified that they would only use LBSN in certain situations for example one participant said they would only use it if they were traveling stating: “[t]he only use I see in it is if I was traveling. I went on a holiday in Tasmania and my mum was worried about where I was because I wouldn't contact her and stuff. And with this she would be able to know where I am constantly, and if I am lost somewhere they would know the last place I was at.” Another participant identified that: “[t]his thing comes in really handy in unforeseen situations, maybe you are in a car and you cannot call a person to come along. So those are a few situations where it can be helpful but for security and privacy. If I can find myself in the database and I can only be seen by my close family that will be really good.” This demonstrated that there were situations within which the utility of LBSN would motivate individuals to adopt the technology although there were some concerns about security and privacy by some participants.

Finally there were three responses which did not identify conditions upon adoption. The first response was by a participant who would adopt LBSN however, they did not have the requisite device. They reflected: “the technology that I have will not let me [conduct LBSN] because I have an older phone. I tried using it but it wouldn't work.” The second response identified that they would use it without conditions and that it did not pose any privacy concerns for them. I'd “use it but I'd stop using from boredom more than anything else, it wouldn't be because of privacy. There doesn't seem like there is a point to it. It is not a privacy thing.” The final response to mention in this section is by a participant who was open to the adoption of LBSN. “I reserve judgment until I see it in action. The general idea is pretty useful I guess. I am open to it. If you have someone's email address you can find out where they live and you can find out anything you want about them… I'm not too worried about it at this point because I think it is probably too late to start worrying about how much protection … you know… your identity and your location, it's all out there.” This participant drew upon the idea that identity and location information is already available on the Internet or in caller detail records or direct marketing material, concluding that it is therefore “probably too late to start worrying about how much protection” we place on further exposure of location information.

3) Participants who would Never Adopt LBSN

The majority of participants indicated that they would not adopt LBSN. Participants gave the following reasons; it is unnecessary or a hassle, it raises ethical concerns, segregates from human contact, or they did not want to disclose their location. The participants who identified that it was unnecessary or a hassle included the following responses: “I don't have time”  “Would be a hassle I don't use stuff like that”  “Unnecessary, I don't care exactly where my friends are. I wouldn't use it to find them whether or not they would use it to find me”  “If you are a close enough friend then would you not just call them?”  “There are other ways of getting in contact, so do we need this location based networking to get in contact. Phone calls are easy enough to make. I am saying you can have it, it is just social networking, whatever, if you just want to keep in contact with friends and that but you can also do that in other ways as well.” All these responses indicate the view of some participants that LBSN is not a necessity, and that existing technologies can be used or should be used- “would you not just call them?” A side note to observe from the latter three responses above is that these participants regarded the existing technologies, which do not allow for unobtrusive observation of location, should be used in preference to LBSN.

Participants identified a range of ethical concerns from using LBSN to prank people “because they trust it”, such as LBSN being used by “serial killers” or for the purpose of “stalking”. More detailed ethical concerns were discussed in responses to “Why would/(not) participants use LBSN?” In addition to the ethical concerns one participant commented that LBSN would change the dynamics of communication with the effect of segregating users from human contact. “It segregates people from human contact. Instead of calling them up and asking them what they are doing, you will just search thlem and see what they are doing without them knowing. It is like stalking.”

A large proportion of the participants who would not use LBSN explained their view on the basis that they did not want to share their location information. Some of the remarks included that LBSN was “[a]nother layer of what people already know about you”  “I don't like people knowing where I am half the time”  “I wouldn't use it. I just don't want everyone knowing where I am 24/7. Even if like you have the option to turn it off or whatever, I would still feel like even when it is off it is kind of … I don't know I'd still feel unsure about it”  “like you may forget to turn it off and not want people to know where you are like, if you are cheating on your girlfriend. And if she goes on and sees that you are at another girl's place”  “If you have it on 24/7 and then there are brief stints where it is off then people are like “he is up to something” or “what is he doing now”. Even if they don't know what you are doing, they might think that you are doing something suspect because this is the time that it is off”  “People like to do that — they like to think ‘Oh he could be doing something suspect, lets find out what it is’.”

Two key ideas emerge from these responses. Firstly, that some people are concerned about revealing too much information about themselves like “I don't want everyone knowing where I am 24/7”. Secondly that revealing location can be dangerous-not in and of itself-but because of what people do with that information. As the latter two responses illustrated, people's curiosity and desire for gossip can lead them to use location information for the wrong purposes and infer “suspect” scenarios.

B. Reasons Why Participants Would/Would Not Use LBSN

The second discussion question was why or why not participants would use LBSN. Some participants provided reasons for their position in response to the first question, however this second question required the respondents to expand upon that discussion and identify specific purposes for using and not using LBSN regardless of their response to the first question. The participants’ responses are summarized in Table I with a discussion of the responses in the two following sections.

1) Reasons Why Participants Would Use LBSN

The reasons that participants stated they would use LBSN included the ability to keep track of or monitor children, employees or friends, store a travel journal for themselves and others to view, to provide parents or carers with peace of mind while they were traveling or for fun. Following are excerpts of some of the responses provided by the participants.

TABLE I. Reasons to use/not use LBSN

Reasons to use LBSN

• Monitoring or tracking of children, employees, friends

• Travel journal

• Parents peace of mind while traveling

 

Reasons not to use LBSN

• Intrusion into peoples’ lives

• Impact upon trust

• Drain the batteries in device

• Privacy

• No one uses it

In relation to monitoring or tracking participants expressed: “[t]he only reason that I would use it is if I wanted to know where someone was and they weren't telling me where they were”  “Well if you were one of those people who always had to know where someone was then it would be useful because then you wouldn't be always calling them [saying] ‘where are you, where are you?’”  “If I had a business I would use it on my employees, especially if they had their own vehicles, so I would know where the employees are going.”

Participants also expressed that they would use LBSN if they were traveling: “[t]he only use I see in it is if I was traveling”  “Used for traveling, when you want your friends back at home to keep track of where you are”  “If you are traveling from location to location so you can see where you are and also for people who want to see where you are and who want to know what time to expect you. So they can see how long it will take before you arrive.”

And finally one participant noted that “maybe I would use this just for fun. Like, ‘where are you?’ for fun. If I don't want to use it, I'll just turn it off”.

2) Reasons Why Participants Would Not Use LBSN

Participants gave several reasons why not to use LBSN including that it would present an intrusion into peoples’ lives, impact upon trust, drain the batteries in the device, present privacy concerns and because no one else uses it. Following are some excerpts to clarify and expand upon these reasons.

Participants who identified that LBSN presents an intrusion into peoples’ lives made the following comments: “[c]omes across more as a tool for surveillance rather than a social networking tool” “Parents putting it on their children's phone — negative use for it. Good for the parents but I don't think the child will like it”  “It is just an intrusion into your kid's life, that really shouldn't be there — too much of an intrusion and not enough freedom for when you are getting older and everything, and deserve more freedom” I “Coming home from work and going to the bar but saying to your wife that you are stuck in traffic- ‘oh really but it says you're at the bar, honey’… That kind of problem would come up because people have a tendency to be doing things that they are not supposed to be doing.” These comments illustrate how LBSN can stand in the way of the human desire for freedom and autonomy with the ability to stray from plans.

Participants merely stated that privacy, trust and battery life were reasons for non-use. The participants however elaborated more upon the reason that no one else uses LBSN stating that: “I probably would not use it because no one else uses it so why would I have it. Like it might not be popular now so that is a reason for now, but in the future when everyone else has it, it might not be a reason. So its popularity might affect whether or not I would use it.” In response to this remark another participant commented that: “But when things become more popular, like MS Windows, then people decide to hack MS Windows because it is the same thing that everyone uses. So if everyone started using this, someone out there might find a way to hack it and take advantage of it.”

C. Viewing and Disclosing Location

Participants were asked “Who would you allow to see your location?” and “Who do you want to view the location of?” More responses were elicited from the first question, demonstrating that participants are more concerned with who is able to see their location rather then who they can see. Table II below summarizes the participants’ responses.

TABLE II. Viewing and Disclosing Location Information

People who can View

• No one

• Family/close friends/trusted people

• Friends

• Anyone

• Everyone

People to View

• Everyone

• Friends

• Prime Minister Kevin Rudd

• Parents (depending on the circumstances)

The majority of participants would allow their “family’ or “close friends” to view their location or specified people that they considered to be “really really trusted”. Many participants would allow “family” or “close friends” but not both categories. One participant specified that they “would not request [to use LBSN with] any family member [but] … I might accept it if they add me but I would never actually ask this from my family”. Another participant would add a sibling but not parents and when asked why not stated that: “I tell them a lot but I just don't want them to know absolutely everything. There is this thing where you want to be your own person, have your own space, you don't want to be like trapped. Because you act differently because you think ‘oh shit my parents are always going to be watching what I am doing and where I am’ and that is not good, I don't like that.”

Some participants would add their friends, however specified that it would not be just an acquaintance or “some mate you just bumped into on the road”. However other participants would add everyone or anyone: “Everyone — who would really want to know where I am? … unless I win the lotto” “I'd let anyone. But I would turn it off if I was doing something that I didn't want people to know about”  “If you were doing something and you wanted privacy you would turn it off. But otherwise if people want to enjoy laughing at where I am then I don't really mind.” Although these participants did identify that they would allow anyone or everyone, they did impose some conditions upon their answer. The participants were not as specific about who they would view the location of. Many suggested that they would want to track everyone, even Prime Minister Kevin Rudd, or just their friends.

Section V. Issues surrounding the use of LBSN

The focus group participants were asked what they thought were the potential issues with the use of LBSN. Figure 3 represents the broad categories of responses provided by the participants. The shade of color provides an indication of the number of times each issue came up within the focus groups; the darker the shade, the greater the frequency the issue arose. Security was the premier concern, followed by privacy and trust. Social relations, control, and technological issues were also important to participants.

Figure 3. Issues Surrounding LBSN

A. Security

The focus groups drew out three main issues in relation to security; security of self, security of information and security of others. In relation to security of self, participants commented that LBSN could be: “used as a bullying thing … if you see someone in an area and there is no one else really around that area then bullies could go and use it to get that person”. Another participant identified that “I can watch you on Google Latitude — if you update it every three or four hours and know where you are and build a profile”. Other participants mentioned that it could be used for “stalking” or “pedophile tracking.” One participant commented that it could be used for covert tracking: “I think that if the location is set to continuous tracking there won't be any notification sent from Google Latitude. So if anyone gets a hold of your mobile and sets it to continuous tracking they can follow you around.” The scenario depicted by this participant however, is not entirely accurate, as Latitude does provide notification that it is running in the background, however this notification is only given once a month for the first few months and then once every three months. Therefore covert tracking with latitude would be possible for at least one month or in other cases a few weeks. There are some other LBSN applications that are now entering the market, however, that provide no notification whatsoever.

Participants questioned the security of information retained by the service provider, questioning whether Google would “share our information”, or third party hackers who would “hack into the system [and then] would be able to find whoever, whenever”. In relation to security of others one participant noted that “[my friend's] location and activities  are secured to me, as long as I have my cell phone. If I lose it, and another person finds it … they can easily see the location of my friends”. Therefore having the ability to access a friend's location information can pose a potential threat to the other person's security if the device is lost, stolen, or given to a third person not authorized to view the location information.

B. Privacy

Participants identified privacy as an issue, as LBSN applications primarily involved sharing personal information. The main issue, which emerged, was the intrusion into personal life caused by LBSN. Example remarks included: “[s]omeone can track you and see whether you have gone to a medical centre, so if you wanted to be tested on something and you didn't want anyone to know about it because you would be rejected by society”  “random things like being at the doctor's surgery and having the phone in your pocket and you don't want everyone prying into your life”  “if you were doing anything — not necessarily a crime — but something you wanted to keep secret.” An additional issue was questioning the privacy policy of Google Latitude (and therefore Google) and whether that would “override” the legislation of some jurisdictions to allow for law enforcement authorities who have a warrant to obtain detailed records of one's location.

C. Trust

Participants identified three ways that LBSN could affect trust. Firstly, LBSN users could use the application to “lie” or “hide things”, taking advantage of the trust other users place in the device and creating situations of false trust. Secondly, that LBSN could cause people to “start losing trust — losing trust between everyone, between your closest friends, your boyfriends, girlfriends”, and would make people “start questioning everything and everyone and get bitter and old and grey and home alone”. Therefore LBSN would discourage trust and create distrust between individuals. Finally, participants identified that LBSN would provide people with the ability to look “too deep, watching who is where and who is near, and infer little schemes or soap operas”, and contribute to “random social problems when someone looks up their boyfriend and there is some other person at their house”. Both the latter two comments, present scenarios where the user places greater trust in the device than the individual being monitored, and this shift in trust is the cause of the social problem.

D. Control

Participants commented that “lovers” or “parents” could use LBSN as a method of exerting control. In both proposed scenarios, the control was seen as a pre-existing element of the relationship, and LBSN as a tool for exercising control. Some control-related comments which were representative in the use of LBSN included: “control by a crazy lover”  “it is not about the children it is about having access to the children. About control.” One participant, as noted earlier, spoke about control with respect to owning one's space, and therefore owning one's personhood. This participant noted parental control in this context was a form of indirect control. They might not be telling you what to do, but they are keeping tabs on you.

E. Social Relations

Participants also commented on the effect of LBSN upon social relations. “It takes away from the social part of social networking; we are not communicating with each other we are… just viewing it and it is more of a pervasive thing or voyeuristic thing than a social thing” I “People might use it to avoid certain people as well.” It was noted by another participant however, that at the same time, LBSN could also be used to generate discussion.

F. Technological

Technological issues identified were related to perceived battery consumption, and whether the location tracking/monitoring technology would work indoors. Reliability and accuracy were also important factors discussed, as was whether all new mobile devices now had the feature built in and whether data charges applied to usage.

G. No Issues

Some participants commented that there were no issues with LBSN: “[t]he Google Latitude application is great, if you don't like the system you can deactivate it,” and “[n]o issues, if your friends location is secured to you, so long as you have the phone.”

Section VI. Discussion

People and relationships form the backbone of society. Pahl [20] describes friendship as a “social glue” that provides the fulfillment of the “need for belonging and ‘reliable alliance’ — that is, for a bond that can be trusted to be there for you when you need it” [3]. Research on social networking applications, shows that new technologies can have potential negative implications upon social relationships [21] and privacy [22]. Additionally, location based services (LBS) have social ethical implications [23]. Social networking applications have the potential to become an engrained and integral part of social interactions causing those who do not have the technology to be either excluded or succumb to the adoption of the technology [22]. A bad experience with a LBSN may not only impact an individual, but one's relationships, and more broadly one's ability to trust in others and in society more generally. One might ponder that having knowledge of where someone is all the time should in fact enhance trust, that there is certain predictability behind where a loved one physically is located or where they say they are located. However, technology is not perfect, it is not always accurate, it does not always work as it should, and there is no such thing as a perfect “location” system. Humans also require their autonomy, their freedom, an ability to make every-day mistakes without prying eyes [24].

A. Theoretical Importance

This research provided an investigation of the sociotechnical context of location based social networking technologies and applications in terms of “trust” and “friendship”. Such an investigation has several theoretical contributions. Firstly, it provides an understanding of the concepts of trust, friends and friendship within the context of information communication technologies, and social networking in particular. Secondly, it adds to the scholarship in the area of social informatics, providing an example of how social informatics as a theoretical framework can be employed to arrive at a holistic contextualized understanding of the operation of ICTs. Thirdly, it contributes to the limited scholarship on location based social networking with the view to continue the scholarly dialogue on the design, use and implementation as well as implications of the technology and ICTs in general.

B. Practical Importance

Trust and friendship are important aspects of society, and as such the implications of the use of technology upon these concepts are important from a practical as well as a theoretical perspective. The outcomes of this research can be utilized to inform the creation of policy, guidelines or legislation designed to curb the negative implications of the technology upon society. A recent paper by Grimmelmann [25] argued that although “policy makers cannot make Facebook completely safe… they can help people use it safely”, similarly this applies to the emergent technology of LBSN. The outcomes can also be used to educate individuals, and provide stimulus for a dialogue within the broader community about the implications and benefits of social networking and location-based services. Additionally, the designers of the technology can utilize this research by incorporating concerns or user requirements in new or existing applications.

Section VII. Conclusion

LBSN applications provide users with the ability to conduct real time social surveillance upon their friends, including the acts of real-time tracking and monitoring. This study, through the conduct of a social informatics investigation into LBSN, has identified the potential implications of use of LBSN upon relationships, including its critical effect upon trust. The potential implications can be summarized as security, privacy, trust, control, and an impact on societal relationships. The results from the focus group provided a broad view of the use, design, implementation and context of LBSN, and insight into the possible implications of use. The conclusion to be drawn from this study is the nuanced understanding of the operation of LBSN and its implications as well as the circumstances within which it will have a negative impact upon trust. In addition, this research identified that LBSN did present a credible threat to trust between “friends” and that LBSN applications need to be more robustly designed and implemented to reduce the evident potential for an individual user to suffer harm at the hands of another.

References

1. R. Kling, "What is social informatics and why does it matter?", The Information Society, vol. 23, no. 4, pp. 205-220, 2007.

2. K. Robert, K. Sara, "Internet paradox revisited", Journal of Social Issues, vol. 58, no. 1, pp. 49-74, 2002.

3. B. Misztal, Trust in Modern Societies-The Search for the Bases of Social Order, Cambridge:Blackwell, 1998.

4. S. Sawyer, K. Eschenfelder, "Social informatics: perspectives examples and trends", Annual Review of Information Science and Technology, vol. 36, no. 1, pp. 427-465, 2002.

5. R. Kling, "Learning about information technologies and social change: the contribution of social informatics", The Information Society, vol. 16, no. 3, pp. 217-232, 2000.

6. R. Kling, "Social informatics", Encyclopaedia of Library and Information Science, pp. 2656-2661, 2003.

7. R. Kling, "Social informatics: a new perspective on social research about information and communication technologies", Prometheus, vol. 18, no. 3, pp. 245-264, 2000.

8. R. Kling, L. Covi, "Electronic journals and legitimate media in the systems of scholarly communication", The Information Society, vol. 11, no. 4, pp. 261-71, 1995.

9. W. Orlikowski, "Learning from notes: organizational issues in GroupWare implementation", The Information Society, vol. 9, no. 3, pp. 237-50, 1993.

10. B. Kahin, J. Keller, Public Access to the Internet, Cambridge, MA:MIT Press, 1995.

11. G. Piccoli, B. Ives, "Trust and the unintended effects of behvaior control in virtual teams", MIS Quarterly, vol. 27, no. 3, pp. 365-395, 2003.

12. D. Mackenzie, "Introductory essay" in The Social Shaping of Technology, Philadelphia:Open University Press, pp. 2-27, 1999.

13. D. Morgan, Focus Groups as Qualitative Research, California:Sage Publications, 1996.

14. A. Gibbs, "Focus group research", Social Research Update, vol. 19, pp. 1-4, 1997.

15. R. Krueger, M. Casey, Focus Groups: A Practical Guide for Applied Research, California:Sage Publications, 2000.

16. P.S. Kidd, M. B. Parshall, "Getting the focus and the group: enhancing analytical rigor in focus group research", Qualitative Health Research, vol. 10, no. 3, pp. 293-308, 2000.

17. J. Kitzinger, "Qualitative research: introducing focus groups", British Medical Journal, vol. 311, no. 7000, pp. 299-302, 1995.

18. D. Druckman, Doing Research: Methods of Inquiry for Conflict Analysis, California:Sage Publications, 2005.

19. M.D. Gall, W.R. Borg, J.P. Gall, Educational Research: An Introduction, New York:, 1996.

20. R.E. Pahl, On Friendship, Wiley-Blackwell, 2000.

21. R. Gross, A. Acquisti, "Information revelation and privacy in online social networks", Workshop on Privacy in Electronic Society, 2005.

22. D. Boyd, N. Ellison, "Social network sites: definition history and scholarship", Journal of Computer-Mediated Communication, vol. 13, no. 1, pp. 210-230, 2008.

23. M.G. Michael, S.J. Fusco, K. Michael, "A research note on ethics in the emerging age of überveillance", Computer Communications, vol. 31, no. 6, pp. 1192-1199, 2008.

24. M.G. Michael, K. Michael, "Uberveillance: microchipping people and the assault on privacy", Quadrant, vol. 53, no. 3, pp. 85-89, 2009.

25.J. Grimmelmann, "Saving Facebook: privacy on social network sites", Iowa Law Review, vol. 94, no. 4, pp. 1137-1170, 2009.

Keywords

Informatics, Social network services, Privacy, Accuracy, Context, Google, Batteries
social networking (online), Internet, mobile computing, social aspects of automation
qualitative approach, social implications, location based social networking, perceived positive impacts, perceived negative impacts, Web 2.0 platform, location based services, online social networking, focus groups, implications, location based services, online social networking, location based social networking,trust, friendship

Citation: Sarah Jean Fusco,  Katina Michael, M.G. Michael, Roba Abbas, "Exploring the Social Implications of Location Based Social Networking: An Inquiry into the Perceived Positive and Negative Impacts of Using LBSN between Friends",  2010 Ninth International Conference on Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), 13-15 June 2010, Athens, Greece, DOI: 10.1109/ICMB-GMR.2010.35

Location-Based Services for Emergency Management: A Multi-stakeholder Perspective

Abstract

emlbs.jpg

This paper investigates the deployment of location-based services for nationwide emergency management by focusing on the perspectives of two stakeholders, government and end-users, in the cellular mobile phone value chain. The data collected for the study came from a single in-depth interview and open comments in a preliminary end-user survey. The themes presented have been categorised using a qualitative analysis. The findings indicate that although governments and end-users believe that location-based services have the potential to aid people in emergencies, there are several major disagreements over the proposed deployment. This paper is an attempt to help determine the underlying motivations and impediments that would influence the decisions of both stakeholders and also towards providing a better understanding of the anticipated role of each party in such a deployment.

SECTION I. Introduction

Location-based services (LBS) are a set of applications and technologies that take into account the geographic position of a given cellular mobile device and provide the device user with value added information based on the derived location data [1]. The conventional use of LBS in emergencies is to find the almost pinpoint geographical location of a cellular handset after a distress phone call or a short message service (SMS). The services have been recently exploited, to some extent, in several countries to complement the existing traditional emergency channels (e.g. sirens, radio, television, landline telephones, and internet) as a means to communicate and disseminate time-critical safety information to all active cellular handsets about unfolding events, even post the aftermath, if the handsets are in the vicinity of a pre-defined threat zone(s) [2]. LBS applications have shown the potential to be a valuable addition in emergency management (EM), particularly, when they are utilised under an all-hazards approach by the interested government agencies.

This paper investigates the perspectives of two pivotal stakeholders in the LBS value chain, namely the prospective user and the government, about the use of the services for the purposes of EM and public warning. The investigation is expected to provide an understanding about the perceived benefits, impediments and concerns of utilising the services into relatively new contexts, and also to shed some light on the expected role of both key players in any feasible future solution. Accordingly, this paper is among the first to examine the potential dynamics between LBS stakeholders, specifically, in the realm of emergencies.

SECTION II. Methodology

This research was conducted using two methods of data collection. The first method was to use a traditional paper survey. Six hundred surveys were randomly distributed by hand to mailboxes in the city of Wollongong, New South Wales, Australia, in November, 2008. Although, this traditional approach is costly, time-consuming and demands a lot of physical effort, it was favoured as it is more resilient to social desirability effects [3] where respondents may reply in a way they think it is more socially appropriate [4]. Beside a basic introduction of location-based services and emergency management, the survey provided the participants with four vignettes; each depicting a hypothetical scenario about the possible uses of LBS applications for managing potential hazardous situations. The scenarios cover specific related topics to emergencies such as an impending natural event, a situation where a person is particularly in need of help, and a national security issue. Two of the vignettes were designed to present location-based services in a favourable light, and the other two vignettes were designed to draw out the potential pitfalls. Through the use of vignettes, participants were encouraged to project their true perceptions about LBS while, at the same time, involved with creating a meaning related to the potential use of the services in extreme events. This was highly important to establish among participants before starting to obtain informed responses from them, especially, when the utilisation of location-based services in the realm of emergency management is still in its nascent stages worldwide.

The survey which predominantly yielded quantitative results also included one open-ended question in order to solicit written responses from the participants. Despite the fact that only 14 respondents wrote hand-written comments, it should be noted that the primary goal of the open-ended question technique was to understand the solution as perceived by the respondents and not to aggregate their responses for any quantitative representation. Therefore, the number of written responses was sufficient to fulfil the requirements of the content analysis.

The second method was to use a semi-structural interview. The interview was conducted with an official from a leading government emergency services department in Australia. The interview was conducted in November, 2008. The main objectives of performing the interview were to:

  • Explore the government's perspective regarding the various LBS technologies being considered for emergency management.
  • Define the potential role of the government in any nationwide feasible LBS-dependent solution.
  • Gain an understanding of the potential impediments, if any, to the government's decision for adopting location-based services solutions.
  • Investigate the government's understanding and position on matters pertaining to information control and privacy concerns, in relation to nationwide deployments of location-based services in emergency management.

The initial focus was to get an understanding of the similarities and differences in opinions, attitudes and sentiments of individual survey participants. Once that was done, a constructed list of extracted unique keywords was generated and then used to combine the points of view thematically. The same list was also used in the discovery of comparable themes within the interview data. This helped to ensure that the discovered themes from both methods are grounded in specific contexts related to the research being conducted [5].

The themes are presented in two sections by stakeholder type: i) the prospective user, and ii) the government. A discussion is then made based on a cross-theme analysis of the two stakeholders.

SECTION III. The Prospective User

The individuals' willingness to accept LBS technologies and applications could, essentially, determine the likelihood for success in the introduction of LBS solutions for emergency management. This research discerned the need to directly elicit peoples' opinions about the consequences of such an introduction in order to have a preliminary understanding and feel for the concerns and issues prospective users might have before the actual deployment of emergency management solutions using location-based services. The following extracted themes have been categorised based on a qualitative analysis of respondents open comments.

A. The role of the government as perceived by the prospective user

The government is perceived to have a multidisciplinary role that includes provisioning, funding, maintaining, and regulating services related to civil society. Technologies like location-based services have the potential to serve the public, and their adoption and development should be highly advocated among strategic decision-making circles. With respect to LBS offerings, strict legislation should also be introduced by the government to explicitly define the legal liability, for example, in the case of a service failure, or information disclosure accidentally or deliberately.

B. Privacy concerns

In the context of LBS, privacy in the government context mainly relates to the personal locational information of individual citizens and the degree of control in which a government can exercise over that information. Such information is regarded highly sensitive, so much so, that when collected over a period of time inferences about a person could be generally made [6]. Accordingly, privacy concerns may originate when individuals become uncomfortable with the collection of their location information, the idea of its perennial availability to other parties, or the belief that they have incomplete control over that collection.

The traditional commercial uses of LBS have long raised concerns about the privacy of the users' location information [7]. The same issues arise within the context of emergencies. Survey respondents expressed genuine concerns about the possibility of being tracked constantly even during an emergency. This specific note is quite interesting to mention as it raises again the argument of whether or not individuals are willing to relinquish their privacy for the sake of continuous safety and personal security [8]. Another concern expressed was that location information could be used for other purposes besides a given emergency context. Such unauthorised secondary use of the collected information has been discerned in the literature as one of the main privacy concerns that also include excessive location data collection, errors in storage and improper access of the collected data [9]. The last concern conveyed by respondents was that information could be gradually spread or shared with third parties, who are not pertinent to the government's emergency organisations, without explicit consent from the LBS user.

C. The Price of the Services

Some respondents perceived the price of location-based services to be expensive, especially in the context of emergency management. One respondent was adamant that they would not be willing to pay in exchange for using location-based services in an emergency, believing it was a public right. This may suggest that the usage context may have little to do with impacting an individual's decision to use location-based services. Nonetheless, a more rational explanation is that respondents may have a lack of awareness and appreciation of the associated benefits.

In general, the comments suggested that the fees should be borne by the government through the allocation of taxes gathered from the working population, to cover the costs of providing and maintaining vital civic services.

D. Assurance of control mechanisims

One emphasis in the respondents' comments was the need to assure the prospective user's control over who would collect the information, how the location information would be collected, who would have access to that information, where the information would be stored and for how long, and what information would be kept after the occurrence of an emergency incident. For example, it is envisaged that such data would be extremely vital in coronial inquests post natural or human-made disasters. In the state of New South Wales, in Australia, for instance, coroners are exempt from privacy laws and can legitimately gain access to medical records, financial transaction data and even telecommunications records. As a result, a need to create safeguards to protect users' right to control their personal location information was profound among respondents.

Zweig and Webster [10] argued that individuals would accept a new technology, if they perceived to have more control over their personal information. Therefore, an important issue concerns the potential use of location-based services in emergencies, is how the users perceive the most dependable safeguard that is capable of protecting their location information, thus alleviating any concerns they might have to begin with.

Xu and Teo [11] have defined several control mechanisms in order to alleviate similar concerns. One mechanism is the technology self-based assurance of control, which refers to the ability of the LBS user to exercise a direct control over his/her location information via the technical features of the LBS device. For example, a user can determine when to opt-in or to opt-out from a service or can define the preferred accuracy level to which the solution provider is able to track his/her handset. This has been expressed in one of the respondent's suggestions of having some technical features in the handheld device itself in order to be able to “switch on/switch off” the location-based service anytime.

Another assurance of control is a mechanism that is institution-based via legislation. In this case, relevant government laws and regulations exist within the legal system to ensure the proper access and use of the personal locational information [11]. Forces in power (i.e. in this context, government agencies tasked with emergency response) could exercise proxy control over the location information on behalf of the user in the case of an emergency. However, the control should be safeguarded by the assurance that unauthorised behaviours will be deterred through the legal system in use. One respondent actually advocated the idea of introducing explicit relevant legislation, before presenting the services to the public, as it would provide powerful and foolproof safeguards for protecting users' control over their private information.

E. The usefulness of the services

The frequency of emergencies and natural and human-made disasters, and the highly unanticipated nature of such extreme events present opportunities for initiatives based on LBS solutions as a promising and a valuable addition to the existing utilised approaches for managing all identifiable hazards and their possible aftermaths. However, for any initiative proposed usefulness is a principle reference point for judging its suitability to people. If people do not perceive any usefulness behind LBS for emergencies, then it is most likely that they would not consider the use of the services. The comments from the respondents overwhelmingly perceived LBS to be highly useful in emergency situations. One suggestion is that the technology should be utilised for emergency purposes only as their usefulness in such situations far outweigh any privacy concerns they might raise. However, most of the respondents perceived a potential for LBS to be utilised as an important medium to assist communities in emergencies beside their obvious practical possibilities for commercial application as well.

SECTION IV. The Government

Former worldwide experiences have clearly revealed the indispensable role of the government in emergencies since only governments usually have the capabilities to fund and control the financial, human and technical resources needed to managing such situations. As a result, it could be argued that the realisation of a consistent LBS solution for emergency management would be highly conditional upon perceiving the government as the main stakeholder and as a proponent of the services. The following extracted themes represent a “framework of meanings” elicited from the interviewee. The interviewee is an official from a leading emergency services government department in Australia.

A. The role of the prospective user as perceived by the government

Being the focus of the LBS solution, an expected role of the prospective citizen user will not only to be as a mere recipient of the warning message sent by the government but also as the initial point of safety information to others as well. The recipients would have the responsibility to act and convey the warning message to the people who are effectively within their care at the time of the event (e.g. the elderly, the children, the disabled, and the sick). Another example could be a manager of a shopping centre where there is a potential for a large gathering of people in one place, and that place of interest is within the defined emergency area.

B. Where does LBS fit among the existing emergency management solutions?

The European Telecommunications Standards Institute (ETSI) has defined two types of location-based emergency service applications [12]. The first is initiated by the individual in the form of a distress mobile phone call or SMS. In these cases, the telecommunications carriers are obliged to provide information regarding the location of the originated call or message within accuracies between 50 to 150 metres. This service is known as wireless E911 in the United States and E112 in the European Union. The second type of LBS applications are initiated by the solution provider in which alerts, notifications, or early public warnings are disseminated (pushed) to all active handsets, which are within a predefined threat area(s) at the time of the unfolding event.

From a governmental perspective, both approaches (i.e. the emergency phone call/SMS and the LBS warning system) are only two ends of the same spectrum. As a result, LBS solutions for public warning are perceived as an additional extension of the existing emergency and warning systems. Accordingly, the same organisations and agencies handling the conventional inbound emergency phone calls should be assigned the responsibility of handling the LBS emergency public warning system.

C. The perceived benefits of LBS for EM

Location-based services have the potential to act as the primary source of safety information. They can also be utilised to point people in the direction of other safety information channels. The messages delivered through the LBS solution could be the initial warning the public receive if they are within the area that is likely to be affected at that time. Once the message is received, people could then turn into other forms of media, such as television or the radio, for more information.

Through providing people with early safety information, the LBS solution may have the potential to save lives by allowing the individuals to make more informed decisions; thus putting them into a safer position. It should be noted here however that even with such powerful applications, it is government policy during emergencies such as bushfires that still override the capabilities of the new technologies. A technology may be fully functional however, the stance taken by government on what to communicate during a disaster may not be effective or even plausible.

Despite the possibilities, the fact that the cellular handsets are the most prevalent among individuals makes the LBS solutions highly valuable in emergencies. Moreover, contrary to other forms of media, LBS do not require the individual to be anchored to a device in order to receive the information. A warning message could reach all the active handsets within the threat zone, allowing people to understand that something is unfolding around them.

D. The cost of the LBS solution

As every individual has the right to be advised by the government in the case of an unsafe situation, the funding of any possible LBS solution would basically lie on the shoulders of federal and state governments. Due to the specific nature of the solution, it could not be financed through any kind of advertising or sponsoring. The cost will, essentially, depend on the final form of the solution. However, a possible impediment for the government's decision to adopt LBS for emergencies could be the cost-per-message delivered. As every message being delivered theoretically represents a commensurate revenue expectation for telecommunications carriers, long-term partnership arrangement and agreements between carriers and the government, early involvement of the carriers as a major stakeholder could partially answer the cost burden of the solution. Nevertheless, the solution will primarily rely on the practices of the telecommunications carriers and their willingness to extensively share their resources in emergencies with the government. The buy-in of carriers, especially incumbents cannot be overstated, although traditionally carriers have complied with government mandates that have been concerned with the greater good of society.

E. Privacy concerns

Due to the fact that any achievable location-based emergency warning system is meant to be only used for public safety, the privacy associated with it should not be a major issue. LBS public warning solutions are perceived as one end of a spectrum that includes the traditional emergency response services number on the other end. The same organisations will be handling the information from both systems. The sole purpose will be to identify the handset number within the emergency area at the time of the event. The number is perhaps the only mechanism by which a notification could reach the handset if the user is in an imminently dangerous situation.

Any proposed solution could neither be an opt-in nor an opt-out system. If individuals opt-out and did not receive the warning message, and then the unfortunate event occurred where they lost their lives, it would not be well received by the public. The message is provided as a means of maintaining the safety of all individuals that are within the likely affected area. Accordingly, prior consent from the prospective user will not be a prerequisite for initiating the service directly to him/her.

SECTION V. Discussion

An examination of the themes presented reveals an agreement between both stakeholders on the potential benefits of location-based services for emergency management. There is also a consensus that the solution should be funded by the government and regulated, operated and maintained by related government emergency organisations. However, a comparative analysis of the extracted themes shows several disagreements between the two stakeholder types. For example, although there was recognition of the indispensable expected role of the private sector, the prospective users expressed concerns that the telecommunications carriers may view the utilisation of the services in the domain of emergencies as a chance to raise revenue rather than being for the public interest, resulting in unsolicited commercial-based services. Other differences such as the need to address the privacy concerns and some of the design features of the recommended system have also appeared. The analysis is presented in Table 1.

TABLE 1: A COMPARATIVE ANALYSIS OF THE PERSPECTIVES OF THE STAKEHOLDERS

Technologies such as LBS have the potential to serve the public. Therefore, the adoption and the development of such technologies should be highly advocated in the higher decision-making political circles. Initiatives to involve the private sector early in the proposition of location-based services in emergency situations need to be instituted. For example, consider the Warning, Alerts, and Response Network (WARN) Act in the United States, which encourages telecommunications carriers to participate in government warning systems used to target a broad variety of media including cellular mobile phones. The act, specifically, obligates the carriers who do not wish to participate to clearly indicate it to their potential users at the point of sale [13]. In addition, strict legislation should also be put in place to explicitly define the legal liability, for example, in the case of a service failure, or information disclosure accidentally or deliberately.

As the deployment of the proposed solution could be hindered by the misconceptions people might have about the misuse of the technologies, some of the earlier differences could be partially solved by underpinning the possible deployment with a substantial educational campaign about location-based services, their limitations and their potential benefits.

SECTION VI. Conclusion

The paper investigated the perspectives of two pivotal stakeholders in the cellular mobile phone location-based services, namely the government and the prospective user, concerning emergency management solutions. The findings indicate that despite the general agreement of the massive potential of location-based solutions in emergency management, both key players have differed considerably on some of the issues raised such as the design of system and the need to address privacy concerns. A general consensus among the stakeholders is that location-based services is an important tool for disseminating relevant customised warning and safety information to people during and after emergency crises. Utilising LBS technologies could have the potential to allow people to make more informed decisions, leading them potentially into a position of safety, which will ultimately create a more resilient society towards the onslaught of extreme and unexpected events.

References

1. A. Küpper, "Location-based Services: Fundamentals and Operation", John Wiley & Sons Ltd: Chichester, West Sussex, 2005.

2. A. Aloudat, K. Michael, and Y. Jun, "Location-Based Services in Emergency Management- from Government to Citizens: Global Case Studies", in Recent Advances in Security Technology, P. Mendis, J. Lai, E. Dawson, and H. Abbass (Eds), Australian Homeland Security Research Centre: Melbourne. p. 190-201, 2007.

3. W.G. Zikmund and B.J. Babin, "Business research methods". 9th ed, Thomson/South-Western: Mason, Ohio, 2007.

4. T.D. Cook and D.T. Campbell, "Quasi-experimentation : design & analysis issues for field settings", Rand McNally College Pub. Co.: Chicago, 1979.

5. M.Q. Patton, "Qualitative Research & Evaluation Methods". 3 ed, Sage Publications: Thousand Oaks, California, 2002.

6. R. Clarke and M. Wigan, "You are where you have been", in Australia and the New Technologies: Evidence Based Policy in Public Administration, K. Michael and M.G. Michael (Eds), University of Wollongong: Canberra. p. 100-114, 2008.

7. M. Gadzheva, "Privacy concerns pertaining to location-based services". Int. J. Intercultural Information Management, 2007. 1(1): p. 49-57.

8. L. Perusco and K. Michael 2007, "Control, trust, privacy, and security: evaluating location-based services", Technology and Society Magazine, IEEE, pp. 4-16.

9. H.J. Smith, S.J. Milberg, and S.J. Burke, "Information Privacy: Measuring Individuals' Concerns About Organizational Practices". MIS Quarterly, 1996. 20(2): p. 167-196.

10. D. Zweig and J. Webster, "Where is the line between benign and invasive? An examination of psychological barriers to the acceptance of awareness monitoring systems". Journal of Organizational Behavior, 2002. 23(5): p. 605-633.

11. H. Xu and H.-H. Teo. "Alleviating Consumer's Privacy Concerns in Location-Based Services: A Psychological Control Perspective". in the Twenty-Fifth Annual International Conference on Information Systems (ICIS). Washington, D. C. 2004.

12. European Telecommunications Standards Institute. "Analysis of the short message service and cell broadcast service for emergency messaging applications". 2006; Available from: http://pda.etsi.org/pda/home.asp?wki- id=jhPgAkxRGQ2455A550@55.

13. S. Mollman. "Cell broadcasts could help avert catastrophe". 2009; Available from: http://edition.cnn.com/2009/TECH/02/05/db.cellbroadcast/ index.html?iref=intlOnlyonCNN.

ACKNOWLEDGMENT

This research was supported under Australian Research Council's Discovery Projects funding scheme (project DP0881191). The views expressed herein are those of the authors and are not necessarily those of the Australian Research Council.

Keywords

Disaster management, Government, Telephone sets, Conference management, Technology management, Australia, Mobile handsets, Impedance, Management information systems, Privacy, radio direction-finding, cellular radio, emergency services, qualitative analysis, location-based services, emergency management, multistakeholder perspective, cellular mobile phone value chain, cellular mobile phone, location-based services, emergency management, public warning, all-hazards approach

Citation: Anas Aloudat, Katina Michael, Roba Abbas, 2009, "Location-Based Services for Emergency Management: A Multi-stakeholder Perspective", Eighth International Conference on Mobile Business, ICMB 2009, 27-28 June 2009, Dalian, China, 10.1109/ICMB.2009.32

Control, trust, privacy, and security: LBS

4135773-graphic-1-small.gif

Location-based services (LBS) are those applications that utilize the position of an end-user, animal, or thing based on a given device (handheld, wearable, or implanted), for a particular purpose. LBS applications range from those that are mission-critical to those that are used for convenience, from those that are mandatory to those that are voluntary, from those that are targeted at the mass market to those that cater to the needs of a niche market. Location services can be implemented using a variety of access media including global positioning systems and radio-frequency identification, rendering approximate or precise position details.

The introduction of location-based services, which are growing in sophistication and complexity, has brought with it a great deal of uncertainty. Unaddressed topics include: accountability for the accuracy and availability of location information, prioritization and location frequency reporting, the user's freedom to opt-in and opt-out of services, caregiver and guardian rights and responsibilities, the transparency of transactions, and the duration of location information storage. Some of these issues are the focus of court cases across the United States, usually between service providers and disgruntled end-users or law enforcement agencies and suspected criminals.

While we can wait for the courts to set precedents and then take legislative action to learn about how we should act and what we should accept as morally right or wrong, this is only a small part in considering the emerging ethics of an innovation such as location-based services. Laws, similar to global technical standards, usually take a long time to enact. A more holistic approach is required to analyze technology and social implications. This article uses scenarios, in the form of short stories to summarize and draw out the likely issues that could arise from widespread adoption of LBS. It is a plausible future scenario, grounded in the realism of today's technological capabilities.

Role of Scenarios in the Study of Ethics

Articles on ethics in engineering and computing, for the greater part, have been about defining, identifying and describing types of ethics, and emphasizing the importance of ethics in the curriculum and the workplace. A small number of ethics-related studies more directly concerned with invention and innovation consider the possible trajectories of emerging technologies and their corresponding social implications [1], [2]. Within the engineering field, these studies commonly take on the guise of either short stories or case-based instruction [3], [4]. This article uses scenario planning to identify the possible risks related to location-based services in the context of security and privacy. While “day-in-the-life scenarios” have been popular in both human-computer interaction and software engineering studies, they have not been prevalent in the ethics literature [5].

When is a person sufficiently impaired to warrant monitoring?

The most well-known usage of stories related to ethical implications of technology have been constructed by Richard G. Epstein [6]. His 37 stories in the Artificial Intelligence Stories Web are organized thematically based on how the human experience is affected by the technology [7]. Of fiction, Epstein writes that it is “a great device to help one envision the future and to imagine new concepts and even applications” [8]. His Silicon Valley Sentinel-Observer's Series ran as a part of Computers and Society [9]. John M. Artz has written about the importance of stories advancing our knowledge when exploring areas where we do not fully understand a phenomenon [10]. Artz calls stories and our imagination “headlights” that allow us to consider what might lie beyond: “[c]onsider imagination as the creative capacity to think of possibilities. Imagination lets us see the world, not as it is, but as it could be. And seeing the world as it could be allows us to make choices about how it should be.” In 1988, Artz indicated the shortage in short stories in the field, and this paper addresses the shortage by focusing on LBS.

The definition of a scenario used in this paper is “[a]n internally consistent view of what the future might turn out to be” [11]. Scenarios can be used to combine various separate forecasts that pertain to a single topic [12], designed to provide an overall picture of a possible future, and to describe this future in such a way that it is accessible to a layperson in the subject. According to Godet a scenario “must simultaneously be pertinent, coherent, plausible, important and transparent” [13].

The Track, Analyze, Image, Decide, Act (TAIDA) scenario planning framework is used here with respect to LBS to i) identify aspects of the current situation that may have an impact on the future under consideration; ii) deliberate on the possible future consequences of the aspects identified in tracking; iii) approach possible changes intuitively to create a plausible future, “to create not only an intellectual understanding but also an emotional meaning,” iv) determine what should be done about a given scenario in response to issues raised, and v) offer recommendations that will address these issues [14]. Analysis of the future scenario presented will be conducted using deconstruction to draw out the social implications. Deconstruction is an approach to literary analysis that aims “to create an interpretation of the setting or some feature of it to allow people… to have a deeper understanding” [15].

The Roman philosopher Seneca said: “[t]here is no favorable wind for the man who knows not where he is going” [13]. There is certainly merit in exploring the potential effects of LBS before they occur. As Michael and Michael highlight: “[m]ost alarming is the rate of change in technological capabilities without a commensurate and involved response from an informed community on what these changes actually “mean” in real and applied terms, not only for the present but also for the future” [16]. “[T]oday's process of transition allows us to perceive what we are losing and what we are gaining; this perception will become impossible the moment we fully embrace and feel fully at home in the new technologies” [17].

The scenario “Control Unwired” continues five short stories and is set in Australia. The critical analysis that follows is also presented within a predominantly Australian context.

Control Unwired

Vulnerability-The Young Lady

The street appeared to be deserted. Kate wasn't surprised – this part of town always quieted down at night, especially on weekday evenings like this one. There wasn't much around except office buildings and coffee shops that served to provide a steady stream of caffeine to the office workers.

If a person's resistance is bypassed or circumvented, their adaptive capacities can be overloaded, inducing feelings of desperation and helplessness.

Kate fished her smart phone out of the pocket of her grey suit jacket [18], [19]. Pressing a few buttons, she navigated through the on-screen menu to the Services option, then to Call a Taxi [20]. The device beeped at her, flashing the message: No signal available [21].

Kate swore, shoving the PDA back into her bag. The surrounding buildings must have been blocking the GPS signal [22]. She knew she needed to get to a more open area.

What a pain, she thought. They overload me with cases, expect me to stay late, and then the gadget they give me to get home doesn't work.

Although Kate was irritated more than anything else, there was a niggling sort of apprehension in the pit of her stomach. She felt alone – very alone, and not at all comfortable being by herself, at eleven in the evening, in a deserted place.

Shaking off the uneasiness, she berated herself. Get a grip, Kate. You're not a child.

As Kate strode off, a dark shadow detached from a nearby alleyway. It followed, silently, at a distance, keeping out of the dim pools cast by the streetlights.

Unfortunately, Kate didn't know which direction she should go to find a clear space for her phone to get a fix on her location.

If I keep heading the same way, she thought, I'm bound to find somewhere sooner or later.

The surrounding structures were slightly lower here, the taller office blocks just down the road. As Kate walked, the shadow some way behind flickered in the wind, as though it were wearing a long coat. It followed stealthily, steadily decreasing the distance between itself and Kate.

Suddenly, Kate's phone bleeped for attention. Kate pulled it out of her bag again and read the message on the screen: Signal acquired.

“Finally,” she breathed. Quick fingers navigated back to the Call a Taxi command. The phone gave a comforting reassurance that a taxi was on its way, with an estimated arrival time of less than a minute [23].

The shadow hung back, unsure, watching.

Within thirty seconds of making the call, a taxi veered out of nowhere and pulled to an abrupt stop alongside Kate. She opened the door and slid into the back seat.

As the taxi pulled away, the shadow shifted slightly and melted back into the darkness.

Liberty-The Husband and His Wife

The next day, the sun filtered into an east-facing bathroom window, where a man stood studying himself in the mirror.

Slight lines crinkled the skin near his eyes and mouth. His hair was still quite thick and healthy, but flecked with the salt-and-pepper grey of an aging man. Although Colin was well past his sixtieth birthday, he could have easily passed for a man in his fifties.

Suddenly, the telephone rang. Colin paused for a moment, listening – the ring only sounded in the bathroom [24]. The kitchen, bedroom, and lounge room were all silent.

“Even the damn phone knows where I am,” he muttered, shaking his head. He touched the hard lump of the RFID tag that was stitched into the hem of his shirt [25], [26]. “Helen, not again!”

Colin stabbed at an unobtrusive button on the bathroom wall, [27] and his reflection instantly gave way [28] to the face of an attractive woman with bobbed blonde hair [29] – Helen, his wife, calling from the airport in Hong Kong.

“Oh sweetheart, you look tired.” Helen sounded concerned.

Colin shrugged. “I don't feel tired. I think I just need to get some fresh air.”

“Open the window, then. It might make you feel better.”

Colin thought that what would make him feel better was a nice long walk without his wife checking up on him every five minutes.

“You haven't been to the cupboard yet to take your morning medicines,” Helen said.

“Why don't you stop pussyfooting around and just inject me with one of those continuous drug delivery things?” [30], Colin frowned.

Helen smiled. “Great idea,” she teased. “We could put a tracking chip in it too. Two birds, one stone” [31].

“At least then I wouldn't have to wear this stupid bracelet [32]. They're made for kids [33], Helen.” Colin knew his wife was joking, but the truth was that he often did feel like a recalcitrant child these days.

“Well,” Helen replied, “If you didn't insist on being so pig-headed, you wouldn't have to wear it. I was terrified when you collapsed. I'm not going to let it happen again. This way I know you're not gallivanting about without someone to look after you.”

“Ever considered that I can take care of myself? I'm not a child.”

“No, you're not. And you're not a young man either,” Helen admonished. “You need to accept that with your condition, it's just not safe to be going off by yourself. What if something happened to you? Who would know? How would we find you?”

“I feel like a prisoner in my own home, Helen. I can't even take the thing off without you knowing about it. You know they use these for prisoners?”

“Parolees, dear. And they're anklets.” She leaned in closer to the screen. “Someone needs to take care of you, Colin. If you won't, I'll have to do it myself.”

Colin sighed. “You just don't understand what it's like to be getting… older. Not being able to do everything you used to. Being betrayed by your own body. It's bad enough without you babying me along like some kind of octogenarian invalid.”

“Well, I guess that's the downside to marrying a woman almost twenty years younger than yourself,” Helen grinned.

“The only downside.” Colin smiled back at her, but his heart wasn't really in it. They had been through this argument countless times before.

He changed the subject. “Heard from our dear daughter lately? Or Scott?”

“Kate called me last night. She's doing well.”

“How's her new job?” Colin asked.

“Well, she says she enjoys it, but she's working very long hours,” Helen replied.

“And I bet you're worried about her being alone in the city at night for five minutes,” Colin said.

Helen gave a self-conscious smile. “It's not a very nice part of town. I'll feel much better about her working late when the firm moves closer to the inner city.”

“And Scott?”

“Haven't heard from him. He's back in Sydney now, though. I wish he'd call.”

“Maybe if you weren't always pestering him to marry his girl from Melbourne, he'd call more,” Colin grinned.

Helen glanced up, away from the screen.

“Sweetheart, I have to go – they've just given the final boarding call for my flight. Enjoy the rest of your day. I'll see you when I get home tonight.” She blew a rather distracted kiss at the screen, then it went blank.

Colin's shoulders sagged. Alone again.

He shuffled into the kitchen to make breakfast. Helen had left him skim milk and pre-packaged porridge oats.

“Wow,” he muttered. “Cosmic Blueberry or Bananarama? Such decisions.”

Just as Colin was finishing off the last few spoonfuls, the watch on his wrist emitted a low beep. He glanced at the screen: Low battery – critical.

Colin smiled. The device had been flashing low battery messages intermittently since yesterday evening. It had less than three days' standby time, and being on a business trip, Helen wasn't around to make sure it got recharged [34].

The screen on the little device winked out.

Munching on his porridge, Colin reached over to the cutlery drawer and took out the kitchen scissors. Very carefully, he snipped out a neat little rectangle from the hem of his shirt. The RFID tag came with it.

He swallowed down the rest of his breakfast and tossed the tag onto the counter.

Colin was going for a walk.

No alert went out to Helen. No neighbors came hurrying to see what he was doing. He reveled in the possibility of heading out without someone watching his every move [35].

Colin wandered off, his own man, if only for a morning.

Association-The Friends and Colleagues

“Hey Janet. Sorry I'm late.” Scott slid into the other seat at the table.

Janet sighed, pushing a latte and a sandwich towards him. She'd already finished her coffee. She gestured to her PDA. “These gadgets do everything. They compare our schedules, pick a place convenient to both of us, make sure there's something vegetarian on the menu for me, and book a table. Pity they can't get you here on time too.”

“I'm sure it's on the horizon,” Scott joked. “So how's life in the Sydney office?”

“All right. The weather makes a nice change. How about your parolees?”

Scott laughed. “There's a lot more of them. In Melbourne I had fifty or sixty cases at once. Now I've been allocated more than a hundred.” He bit into his sandwich. “With less parole officers able to handle more cases, I guess I'm lucky to have a job,” he continued with his mouth full [36].

Janet raised her eyebrows. “With a lot of women intolerant of bad table manners, you're lucky to have a girlfriend. I assume the workloads are greater because they use those chips here?”

“The caseload is greater, the workload is the same – yeah, because of the chips” [37]. He smiled. “It's crazy that New South Wales is already trialing these tracking implants, while Victoria's only recently got a widespread implementation of the anklets [38]. They've been around commercially for years. Mum's got Dad wearing a tracking watch now, for peace of mind after the whole angina scare.

“But the implants are much better,” Scott continued. “Who wants a chunky anklet or bracelet that makes you look like a collared freak? I'll bet it's really disconcerting having people stare at you suspiciously in the street, knowing that you're a criminal. It kind of defeats the purpose of parole – the idea is rehabilitation, reintegration under supervision. That's why the implants are so good – there's no stigma attached. No one can even tell you have one. And they're harder to remove, too.”

“I don't see what the big deal is,” Janet replied. “Why not just keep people under lock and key?”

“Resources. It costs a lot to keep someone imprisoned, but the cost drops significantly if you imprison them in their own home instead [39]. It's about overcrowding, too – jails everywhere have had an overcrowding problem for years [40].

Can it be considered reasonable to impinge upon the freedom of someone who is merely suspected of committing a crime?

“I also think electronic monitoring and parole are much better in terms of rehabilitation,” Scott went on. “People can change [41]. Often they've committed a fairly minor crime, then they go to prison, get mixed up with worse crowds [42]–[43][44]. It can be pretty rough in there. There is certainly a danger that by imprisoning people with ‘harder’ criminals, you run the risk of corrupting them further and exacerbating the problem [40].

“On parole, they can still go to work and earn money, be productive members of society, get their lives back [44], [45]. But they're watched, very closely – the tracking systems alert us if anything looks off. It's imprisonment without prisons.”

Janet smiled. “That's very Alice in Wonderland. When the Cheshire Cat disappears – how does it go? ‘I've often seen a cat without a grin, but a grin without a cat is the most curious thing I ever saw in all my life!'”

Scott laughed. “I suppose you could compare it to that.” He noted Janet's skeptical look. “It's not like we're sending people out of jails willy-nilly. There is a pretty thorough system in place to determine who gets paroled and who doesn't.”

“So how does that work?” asked Janet.

“Well, a while ago it was mainly based on crime-related and demographic variables. We're talking stuff like what sort of offense they're doing time for, the types of past convictions on their record, age, risk of re-offending” [46].

She nodded.

“Now a bunch of other things are looked at too,” he continued, finishing off his sandwich. “It's a lot more complex. Psychological factors play a big part. Even if someone displays fairly antisocial traits, they're still considered pretty low risk as long as they don't also show signs of mental illness” [47].

“So prisons are the new asylums?” Janet frowned.

“Not quite but I see your point,” Scott admitted.

“What about terrorists?” Janet argued. “How can you guarantee that there won't be another incident like the Brisbane rail bombings”[48]?

“Like I said, anyone considered really dangerous is still kept in a regular prison,” Scott said. “All the major landmarks and places people congregate in Sydney are tagged anyway [49]. There's no way a convicted terrorist would get within a hundred meters of anything worth attacking.”

Janet raised her eyebrows, unconvinced. She thought of the newspaper reports about security breaches of public places that had been linked to professional cybervandals. As far as she was concerned, no new technology was the silver bullet.

Scott continued, “And you know that governmental powers now allow ‘persons of interest’ to be implanted as well.”

Janet shook her head. “I'm all for preventing terrorist attacks. But implanting people who haven't committed a crime? How far will they take it? What if the government decided that they should just track everyone, to be on the safe side?”

Scott shrugged. “I guess we just need to find a nice balance between personal freedom and national security.”

He glanced at his watch and pushed his chair back. “I need to get back to work,” he said apologetically.

Policing-The Officer and the Parolee

Scott paused on the landing in front of Doug's apartment and steeled himself. Doug was his last visit of the day. Scott was a fairly likeable guy and had a rapport with most of his cases, but Doug, convicted of aggravated sexual assault, was different [50].

Scott knocked on the door.

A few seconds passed, then it opened a fraction and a stubbled face peered out. Doug wore a stained long-sleeved shirt and ratty jeans.

“Scott,” he sneered. “So nice of you to drop by.”

“Let's just do this, Doug.”

Scott followed Doug into the living room. He pulled out a small device and waved it up and down the man's left arm. It beeped and Scott checked the screen.

“Your chip seems fine,” he said. “Just a routine check – we like to do one every now and then to make sure everything's okay. Congratulations on your new job, by the way. How do you like house painting?”

“My true bloody calling,” Doug leered.

“Er… great. Keep it up then. With good behavior like this you'll be done in no time.”

Scott felt relieved that he would no longer have to sift through Doug's daily tracking logs.

Doug just smiled.

Duplicity-The Victim

Doug waited more than two hours after Scott left before removing his shirt. He peeled off the electrical tape covering an ugly, ragged scar on his upper arm [51]. The scar wasn't from the chip's implantation. It was created by the deep cut Doug's heavily pierced cyberpunk friend had made to remove it [52].

The tiny chip – smaller than a grain of rice – was stuck to the back of the tape. Gingerly, Doug set it on the table in front of the TV and smiled. His chip was having a night in.

He was going out.

Doug pulled his shirt back on and shrugged into a long coat.

He knew there would be a young woman in a grey suit leaving her office soon. She worked at the law firm that was hot stuff in the news. Stupid really, he thought, that she's not afraid to wander the streets in that part of town at night, alone. A Smart girl like that should know better.

The stairwell was quiet. He slipped out into the darkness, a shadow among the other shadows.

He wanted to pay that attractive little lawyer a visit before she caught her taxi home.

Critical Analysis

Legal and Ethical Issues

According to Ermann and Shauf, our “ethical standards and social institutions have not yet adapted… to the moral dilemmas that result from computer technology” [53]. This has a great deal to do with the way Helen uses the LBS technologies available to her. In Liberty, Helen obviously cares about her husband and wants what is best for his health. She is willing to “help” Colin look after himself by monitoring him and restricting the activities she allows him to participate in, especially when he is alone. It is not too difficult to imagine this happening in the real world if LBS becomes commonplace. It is also conceivable that, for some people, this power could be held by a hospital or health insurance company. However, Helen fails to balance her concern for her husband's physical welfare with his need to be an autonomous being. Although LBS technologies are readily available, perhaps she has not completely thought through her decision to use these technologies to monitor Colin, even if it is ostensibly for his own good. It could even be seen as selfish.

The current climate is indicative of individuals' willingness to relinquish their privacy (or at least someone else's) for the sake of impenetrable security.

Consideration of legal issues is also important – it does not appear that there is any specific Australian legislation that covers the unique possibilities of LBS tracking. One situation that is likely to appear with more frequency is people using LBS technologies to monitor loved ones “for their own good.” Several issues are raised here. When is a person sufficiently impaired to warrant such monitoring? Should their consent be necessary? What if they are considered to be too impaired to make a rational decision about monitoring?

Autonomy is an important part of a person's identity. Resistance to a situation is often unconsciously employed to “preserve psychically vital states of autonomy, identity, and self-cohesion from potentially destabilizing impingements” [54]. If a person's resistance is bypassed or circumvented, their adaptive capacities can be overloaded, inducing feelings of desperation and helplessness. The natural reaction to this is to exert an immediate counterforce in an attempt to re-establish the old balance, or even to establish a new balance with which the individual can feel comfortable [54].

These ideas about autonomy, identity and resistance are demonstrated in Liberty through Colin. He experiences feelings of helplessness and vulnerability because of his loss of autonomy through constant LBS monitoring. His unsupervised walk can be seen as an attempt to redress the balance of power between himself and Helen. With these issues in mind, perhaps the kindest and least disruptive way to implement a monitoring program for an aging individual is to develop a partnership with that person. In this sort of situation, LBS tracking can be a joint process that “is continually informed by the goal of fostering… autonomy” [54].

Another significant legal and ethical issue is that of monitoring people such as those suspected of being involved in terrorist activities. As hinted at in Association, this is not mere fancy – the Australian Government, for example, has passed new anti-terrorism laws that, among other things, would give police and security agencies the power to fit terror suspects with tracking devices for up to 12 months [55].

This kind of power should give rise to concern. Can it be considered reasonable to impinge upon the freedom of someone who is merely suspected of committing a crime? For tracking implants especially, do governments have the right to invade a personal space (i.e., a person's body) simply based on premise?

Criminals give up some of their normal rights by committing an offense. By going against society's laws, freedoms such as the right to liberty are forfeited. This is retributivism (i.e., “just deserts”). The central idea is proportionality: “punishment should be proportionate to the gravity of, and culpability involved in, the offense” [40]. With no crime involved, the punishment of electronic monitoring or home detention must be out of proportion.

The threat of terrorist attacks has led the Australian Government to propose giving itself extraordinary powers that never could have been justified previously.

With measures such as those in Australia's counter-terrorism laws, there is obviously a very great need for caution, accountability, and review in the exercise of such powers. Gareth Evans, the former Australian Labor foreign minister, commented on the laws by saying:

“It is crucial when you are putting in place measures that are as extreme in terms of our libertarian traditions as these that there be over and over again justification offered for them and explanations given of the nature and scale of the risk and the necessity… it is a precondition for a decent society to have that kind of scrutiny” [56].

 

The July 2005 London subway bombings are the justification offered repeatedly by Australian Prime Minister John Howard for the new laws, reinforced by Australian Secret Intelligence Organization (ASIO) director-general Paul O'Sullivan. However, this “justification” ignores the reality that “the London bombers were ‘clean skins' who had escaped police notice altogether” [57]. Tagging suspicious people cannot keep society completely safe.

We do not make a judgment on whether pre-emptive control legislation is proper or not. We suggest, however, that the laws recently enacted by the Australian Federal Government (and agreed to by the Australian States) could be indicative of a broader trend.

John Howard said that “in other circumstances I would never have sought these new powers. But we live in very dangerous and different and threatening circumstances… I think all of these powers are needed” [58]. Could the same argument be used in the future to justify monitoring everyone in the country? If pre-emptive control is a part of government security, then widespread LBS monitoring could be the most effective form of implementation.

Without suggesting the potentially far-fetched Orwellian scenario where draconian policies and laws mean that the entire population is tracked every moment of their lives, there is an argument to be made that the current climate is indicative of individuals' willingness to relinquish their privacy (or at least someone else's) for the sake of impenetrable security.

Social Issues

Control emerges as a significant theme in the scenario Control Unwired. Even in LBS applications that are for care or convenience purposes, aspects of control are exhibited. The title reflects the dilemma about who has control and who does not. For example, in Vulnerability, Kate experiences a loss of control over her situation when her GPS-enabled smart phone does not work the way she wants it to work, but a sense of control is restored when it is functioning properly again. Helen has control over Colin in Liberty, and in turn Colin has little control over his own life. In both Association and Policing we see how Scott uses LBS every day as a control mechanism for parolees. Finally, in Duplicity, the question arises whether faith in this sort of control is fully justified.

Trust is a vitally important part of human existence. It develops as early as the first year of life and continues to shape our interactions with others until the day we die [59]. In relationships, a lack of trust means that there is also no bonding, no giving, and no risk-taking [60]. In fact, Marano states:

“[w]ithout trust, there can be no meaningful connection to another human being. And without connection to one another, we literally fall apart. We get physically sick. We get depressed. And our minds… run away with themselves” [59].

An issue that arises in Liberty is that of trust, recalling Perolle's notion of surveillance being practiced in low-trust situations and the idea that the very act of monitoring destroys trust [61]. We can see this happening in the Colin/Helen relationship. Helen does not trust Colin enough to let him make his own decisions. Colin does not trust Helen enough to tell her he is going out by himself, without any kind of monitoring technology. He resents her intrusion into his day-to-day life, but tolerates it because he loves his wife and wants to avoid upsetting her. Their relationship could be expected to become increasingly dysfunctional if there is a breakdown of trust. It is near impossible to predict the complex effects of LBS when used to track humans in this way, especially as each person has a different background, culture, and upbringing. However, if Perolle [61] and Weckert [62] are agreed with, these types of technological solutions may well contribute to the erosion of trust in human relationships – what would this entail for society at large? Freedom and trust go hand-in-hand. These are celebrated concepts that have been universally connected to civil liberties by most political societies.

Technological Issues

There is a widely held belief that it is how people use a technology, not the technology itself, that can be characterized as either good or bad. People often see technology as neutral “in the sense that in itself it does not incorporate or imply any political or social values” [63]. However, there are other researchers who argue that technology is not neutral because it requires the application of innovation and industry to some aspect of our lives that “needs” to be improved, and therefore must always have some social effect [63]. The LBS applications in the scenario all appear to show aspects of control. This would suggest that the technology itself is not neutral – that LBS are designed to exercise control.

Control Unwired seems to echo Dickson's argument that technology is not neutral because of its political nature: “dominating technology reflects the wishes of the ruling class to control their fellow men” [63]. We can certainly see elements of this idea in the scenario. All of the LBS functions depicted are about control, whether it be control over one's own situation (Vulnerability), caring control of a loved one (Liberty), or forced control over parolees (Association, Policing, and Duplicity). These situations imply that LBS is not neutral, and that the technology is designed to enhance control in various forms.

Some believe that technology is the driving force that shapes the way we live. This theory is known as technological determinism, one of the basic tenets of which is that “changes in technology are the single most important source of change in society” [64]. The idea is that technological forces contribute to social change more than political, economic, or environmental factors. The authors would not go so far as to subscribe to this strongest sense of technological determinism doctrine. The social setting in which the technology emerges is at least as important as the technology itself in determining how society is affected. As Braun says: “[t]he successful artifacts of technology are chosen by a social selection environment, [like] the success of living organisms is determined by a biological selection environment” [65]. Technologies that fail to find a market never have a chance to change society, so society shapes technology at least as much as it is shaped by technology. In this light, Hughes's theory of technological momentum is a useful alternative to technological determinism: similar in that it is time-dependent and focuses on technology as a force of change, but sensitive to the complexities of society and culture [66].

Technological potential is not necessarily social destiny [67]. However, in the case of LBS, it is plausible to expect it to create a shift in the way we live. We can already see this shift occurring in parents who monitor their children with LBS tracking devices, and in the easing of overcrowding in prisons through home imprisonment and parole programs using LBS monitoring.

As described previously, the threat of terrorist attacks has led the Australian Government to give itself extraordinary powers that never could have been justified previously. In this situation, LBS has enabled the electronic monitoring of suspicious persons; however, it is not the technology alone that acts as the impetus. Pre-emptive electronic tracking could not be put in place without LBS. Neither would it be tolerated without society believing (rightly or not) that it is necessary in the current climate.

The scenario also demonstrates that technology and society evolve at least partially in tandem. In Association, through the conversation between Scott and Janet, we learn that LBS tracking implants were not introduced simply because they were technically feasible. The reasons for their use were to reduce overcrowding in prisons and to mitigate the burden of criminals on the ordinary taxpayer. Social and economic factors, as well as technological ones, contributed to this measure being taken.

Although technology is not the sole factor in social change, and arguably not the most important, LBS are gaining momentum and are likely to contribute to a shift in the way we live. This can be seen both in the scenario and in real-life examples today. Throughout Control Unwired we can see LBS becoming an integral part of daily life. If this does happen, consideration must be given to what will happen if the technology fails – which it inevitably will. No technology is completely perfect. There are always shortcomings and limitations.

Examples of deficiencies in LBS technologies can be found scattered throughout the scenario. In Vulnerability, Kate appears to be over-reliant on LBS (why does she not simply call a taxi from her office before leaving?) and when the technology fails, it creates a potentially dangerous situation. Even more dangerous circumstances occur in Duplicity. Doug, a convicted sex offender, is able to break his curfew without anyone knowing. Perhaps measures could be implemented to stop such breaches from going undetected, but that would not stop them from happening altogether. One U.S. study found that about 75 percent of electronically monitored “walk offs” were re-apprehended within 24 hours [45]. That means a quarter went free for more than a day – plenty of time to commit other offences. And, although the offender may be caught and punished, it is difficult to remedy the damage done to an individual who is robbed or assaulted.

And no technology is completely fail-safe. Even electricity, a mainstay of daily life, can suddenly fail, with socially and economically devastating effects. Most of Auckland, New Zealand, went without power for five weeks during a massive blackout in 1998 [68]. A 1977 electricity outage in New York led to widespread looting, arson and urban collapse [69]. If we become as reliant on LBS as we have become on other technologies like electricity, motor vehicles, and computers, we must be prepared for the consequences when (not if) the technology fails.

Risk to the Individual Versus Risk to Society

Any technology can be expected to have both positive and negative effects on individuals and on the wider community. Emmanuel Mesthane of Harvard's former Technology and Society Program wrote: “[n]ew technology creates new opportunities for men and societies and it also generates new problems for them. It has both positive and negative effects and it usually has the two at the same time and in virtue of each other” [70]. From Table I, it is obvious that there is an inherent trade-off between the interests of the individual and the interests of society as a whole: the privacy of the individual is in conflict with the safety of the broader community. As G.T. Marx reflects, “[h]ow is the desire for security balanced with the desire to be free from intrusions” [71]? This work is certainly not the first to allude to this issue. For example, Kun has said that “perhaps one of the greatest challenges of this decade will be how we deal with this theme of privacy vs. national security” [72].

Table I  Positives and negatives of LBS for different user types

Table I Positives and negatives of LBS for different user types

The original contribution of this article is that the dilemma has been related specifically to LBS, under the privacy-security dichotomy [73]. Here, each side of the dichotomy is divided into three key components that combine to greatly magnify risk. Removing one or more components for each set decreases the privacy or security risk. Where more elements are present in conjunction, the risk is increased.

Significant privacy risk occurs when the following factors are present (Fig. 1):

Fig. 1 Privacy Risk

Fig. 1 Privacy Risk

  • Omniscience — LBS tracking is mandatory, so authorities have near-perfect knowledge of people's whereabouts and activities.

  • Exposure — security of LBS systems is imperfect, leaving them open to unauthorized access.

  • Corruption — motive exists to abuse location-related data. This includes unauthorized or improper changes, thus compromising content integrity.

It is not difficult to see why the danger in this privacy-risk scenario is so great. A nation with “all-knowing” authorities means that a large amount of highly sensitive information is stored about all citizens in the country. Security of electronic systems is never foolproof. And, where there is something to be gained, corrupt behavior is usually in the vicinity. The combination of all three factors creates a very serious threat to privacy.

Significant security risk occurs with the following conditions (Fig. 2):

  • Limitedness — authorities have limited knowledge of people's activities.

  • Vulnerability — security of individuals and infrastructure is imperfect.

  • Fraudulence — motive exists to commit crimes.

Fig. 2 Security Risk

Fig. 2 Security Risk

This security-risk dimension is a life situation that people have to contend with in the present day: limitedness, vulnerability, and fraudulence. Law enforcement authorities cannot be everywhere at once, nor can they have instant knowledge of unlawful activity. Security of infrastructure and people can never be absolute. In addition, there are always individuals willing to commit crimes for one reason or another. These factors merge to form a situation in which crimes can be committed against people and property relatively easily, with at least some chance of the perpetrator remaining unidentified.

As mentioned above, the security-risk half of the dichotomy typifies our current environment. However, the majority of society manages to live contentedly, despite a certain level of vulnerability and the modern-day threat of terrorism. The security-risk seems magnified when examined in the context of the LBS privacy-security dichotomy. LBS have the potential to greatly enhance both national and personal security, but not without creating a different kind of threat to the privacy of the individual. The principal question is: how much privacy are we willing to trade in order to increase security? Is the privacy-risk scenario depicted above a preferable alternative to the security-risk society lives with now? Or would society lose more than it gains? And how are we to evaluate potential ethical scenarios in the context of utilitarianism, Kantianism, or social contract theory?

Major Implications

The issues of control, trust, privacy and security are interrelated (Table II). As discussed above, increased control can impair or even destroy trust; i.e., there is no need to be concerned with trusting someone when they can be monitored from afar. In contrast, increased trust would normally mean increased privacy. An individual who has confidence in another person to avoid intentionally doing anything to adversely affect them, probably does not feel the need to scrutinize that person's activities.

Table II  Unanswered questions in LBS

Table II Unanswered questions in LBS

Privacy requires security as well as trust. A person's privacy can be seriously violated by a security breach of an LBS system, with their location information being accessed by unauthorized parties. The other effect of system security, however, is that it enhances control. A secure system means that tracking devices cannot be removed without authorization, therefore, control is increased. Of course, control and privacy are mutually exclusive. Constant monitoring destroys privacy, and privacy being paramount rules out the possibility of LBS tracking. These relationships are summarized in Fig. 3.

4135773-fig-3-small.gif

The most significant implication of the work presented here is this: the potential for LBS to create social change raises the need for debate about our current path and consideration of future probabilities. Will the widespread application of LBS significantly improve our lives? Or will it have negative irreversible social effects?

Technological progress is not synonymous with social progress. Social progress involves working towards socially desirable objectives in an effort to create a desirable future world [65]. Instead of these lofty ideals, technological progress is based on what is technically possible. However, there is a difference between what can be done and what should be done – the relentless pursuit of technological advancement for its own sake is arguably a pointless exercise. Do we really need more electronic gadgets in our daily lives? As Kling states:

“I am struck by the way in which the news media casually promote images of a technologically rich future while ignoring the way in which these technologies can add cost, complexity, and new dependencies to daily life” [74].

In the Association section of the scenario, Janet's comment about Alice's Adventures in Wonderland can be seen as more than just a superficial remark. In the book, Alice has the following conversation with the Cat:

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don't much care where—” said Alice.
“Then it doesn't matter which way you go,” said the Cat [75].

Martin Gardner says that John Kemeny, author of A Philosopher Looks at Science, compares Alice's question and the Cat's answer to the “eternal cleavage between science and ethics” [75]. The same could be said of LBS technologies and possible future applications. New technologies provide exciting opportunities, but human decision-making based on social and ethical considerations is also needed in determining the best path to follow. Technology merely provides us with a convenient way to reach the destination. Without a sense of direction, where might we find ourselves? And where is the logic behind a “directionless” destination? There is clearly a serious need for thought and discussion about how we want LBS to be used in the wider context of its potential application.

Besides developing a sense of purpose for the use of LBS, we need to examine very carefully the possibility of the technology having unintended side effects such as the breakdown of trust and abuse of its application. Certainly, the potential effect of unplanned consequences should not be underestimated. According to Jessen:

“The side effects of technological innovation are more influential than the direct effects, and they have the rippling effect of a pebble hitting water; they spread out in ever enlarging concentric circles throughout a society to transform its behavior, its outlook, and its moral ethic” [76].

Of course not all secondary effects can be foreseen. However, this does not mean that deliberating on the possible consequences is without some genuine worth. Surely some form of preparation to deal with adverse outcomes, or at least to notice them before they become irreversible, is better than none at all.

The scenario Control Unwired has demonstrated the potential of LBS to create social change. It has also shown that the use of LBS may have unintended but long-term adverse effects. For this reason the major recommendations are cross-disciplinary debate and technology assessment using detailed scenario planning. We need to critically engage with LBS, its potential applications, and possible side-effects instead of just blindly hurtling along with the momentum of technology-push.

References

1. J. E. Jacobs, "Social implications of computers: ethical and equity issues", ACM Outlook, pp. 100-114, 1988.

2. C. Huff, "Practical guidance for teaching the social impact statement", ACM CQL, pp. 86-89, 1996.

3Cases on Engineering Ethics Practice, Oct. 2006, [online] Available: http://www.onlineethics.org/ eng/cases.html.

4. A. Ghafarian, "Integrating ethical issues into the undergraduate computer science curriculum", ACM CCSC - JCSC, vol. 18, no. 2, pp. 180-188, 2002.

5. J. A. Rohn, "Usability in practice: Alternatives to formative evaluations — Evolution and revolution", CHI 2002, pp. 891-897, 2002.

6. R. G. Epstein, The Case of the Killer Robot, NY, New York:Wiley, 1997.

7. R. G. Epstein, "Stories and plays about the ethical and social implications of artificial intelligence", Intelligence, pp. 17-19, 2000.

8. R. G. Epstein, "Latest developments in the killer robot computer ethics scenario", ACM SIGCSE, pp. 111-115, 1995.

9. R. G. Epstein, "In-depth! The Silicon Valley Sentinel-Observer’s public affairs NetTV program presents: Toxic knowledge", Proc. Ethics and Social Impact Component on Shaping Policy in the Information Age, pp. 86-91, 1998.

10. J. M. Artz, "The role of stories in computer ethics", Computers and Society, pp. 11-13, 1998.

11. M. Lindgren, H. Bandhold, Scenario Planning: The link between future and strategy, NY, New York:Palgrave-Macmillan, pp. 21, 2003.

12. J. P. Martino, "A review of selected recent advances in technological forecasting", Technological Forecasting and Social Change, vol. 70, no. 8, pp. 719-722, 2003.

13. M. Godet, "The art of scenarios and strategic planning: Tools and pitfalls", Technological Forecasting and Social Change, vol. 65, no. 1, pp. 3-11, 2000.

14. M. Lindgren, H. Bandhold, Scenario Planning: The link between future and strategy, NY, New York:Palgrave Macmillan, pp. 38-168, 2003.

15. P. Hogan, On Interpretation: Meaning and Inference in Law Psychoanalysis and Literature, GA, Athens:Univ. of Georgia, pp. 9, 1996.

16. K. Michael, M. G. Michael, "Microchipping people: The rise of the Electrophorus", Quadrant, vol. 49, no. 3, pp. 22-33, 2005.

17. S. Žižek, "Cyberspace or the unbearable closure of being" in Endless Night: Cinema and Psychoanalysis Parallel Histories, CA, Berkeley:Univ. of California Press, pp. 92-102, 1999.

18. G. Aquino, "Dialled in: GPS cell phones", PC World, Mar. 2004, [online] Available: http://www. pcworld.com/article/id,115273-page,1/article.html, accessed.

19CF Card GPS for PDA’s, Sept. 2005, [online] Available: http://www.filesaveas.com/gpscfcard.html.

20Agis develops real time location service for savvy mobile phone users, Apr. 2005, [online] Available: http://www. asiagis.com.sg/agis/pdf/Navfone_Press.pdf.

21How GPS Works, Sept. 2005, [online] Available: http://www.trimble. com/gps/whygps-anim00.shtml.

22. S. Dooley, P. Gough, "Software integration lowers the cost of A-GPS", Wireless-Web, 2005, [online] Available: http://wireless.iop.org/articles/feature/6/8/7/1, accessed.

23. N. Pikabea, GPS for taxis, May 2004, [online] Available: http://innovations report. de/html/berichte/kommunikation_medien/beri cht29210.html, accessed.

24. B. Gates, The Road Ahead, NY, New York:Viking, pp. 218-219, 1995.

25Silent Commerce Chips Away at Star City Casino Wardrobe Worries, [online] Available: http:// www.accenture.com/Global/Services/By_Subject/Radio_Frequency_Identification/Client_su ccesses/StarCityCasino.htm.

26TAGSYS RFID Products, Sept. 2005, [online] Available: http://www.tagsysrfid.com/eng/ rfid/tagsys_produit/rfid_tag-4-1-1.html, accessed.

27. K. J. Lin, T. Yu, C. Y. Shih, "The design of a personal and intelligent pervasive-commerce system architecture", Proc. Second IEEE Int. Workshop on Mobile Commerce and Services, pp. 163, 2005.

28. M. Cable, The award-winning Flat Screen InvisiSound Mirror Frame makes home theater audio and video disappear, CA, Brisbane:Monster Press Room, Jan. 2005, [online] Available: http:// www.monstercable.com/press/press_result.asp?pr=2005_01_Frame.asp.

29. G. McArthur, "Videoconferencing over IP - The switch is on", Business Communications Rev., Sept. 2004, [online] Available: http://www.bcr.com/bcrmag/ 2004/09/p62.php.

30. M. Madou, BioMEMS/BioNEMS: Research in the laboratories of Marc Madou, 2003, [online] Available: http://www.inrf.uci.edu/research/marcmadou.p df.

31. H. Brøseth, H. C. Pedersen, "Hunting effort and game vulnerability studies on a small scale: A new technique combining radio-telemetry GPS and GIS", J. Applied Ecology, vol. 37, no. 1, pp. 182, 2000.

32. C. S. Miner, "Digital jewelry: Wearable technology for everyday life", CHI '01 Extended Abstracts on Human Factors in Computing Systems, pp. 45, 2001-Mar.

33Wherify's GPS Wherifone, Sept. 2005, [online] Available: http://www.wherify-wireless.com/univLoc.asp.

34GPS Marine Tracking Systems / Vessel Tracking, Sept. 2005, [online] Available: http:// www.environmental-studies.de/GPS/GPS-trac king-systems/Marine-Tracking/marine-tracking.html.

35.J. Dodd, "Parents & technology: The Wherify GPS personal locator offers help but fails to protect", General Computing, vol. 15, no. 2, pp. 35, 2004.

36Job Guide, 2005, [online] Available: http://jobguide.thegoodguides.com.au/statespecific.cfm?jobid =615&state_id=NSW.

37Electronic Monitoring, 1996, [online] Available: http://www. appa-net.org/about%20appa/electron.htm.

38Applied Digital Solutions Announces Working Prototype of Subdermal GPS Personal Location Device, 2003, [online] Available: http://adsx.com/news/2003/051303.html.

39NSWLRC Report: Sentencing, Oct. 2006, [online] Available: http://www.lawlink.nsw.gov.au/lawlink/lrc/ll_lrc.nsf/pages/LRC_ip27chpl.

40. D. Brown, D. Farrier, S. Egger, L. McNamara, Criminal Laws, NSW, Leichhardt:Federation, 2001.

41Discretionary Parole, 2002, [online] Available: http://www. appa-net.org/about%20appa/discretionary_par ole.htm.

42. D. Sugg, L. Moore, P. Howard, Electronic monitoring and offending behavior: reconviction results for the second year of trials of curfew orders, 2001, [online] Available: http://www.probation. homeoffice.gov.uk/files/pdf/r141[1].pdf.

43Electronic Monitoring, 2004, [online] Available: http://www.corrections.govt.nz/public/aboutus/fact-sheets/reducingreoffending/electronic-monitoring.html.

44Chapter 7: Parole, 1996, [online] Available: http://www.lawlink.nsw.gov.au/lrc.nsf/pages/DP33CHP7, accessed.

45Keeping Track of Electronic Monitoring, 1999, [online] Available: http://www.justnet.org/pdffiles/ Elec-Monit.pdf.

46Parole Sex Offenders and Rehabilitation Programs, 2003, [online] Available: http://www.nswccl.org.au/docs/pdf/Parole_Sex Offenders_Note.pdf, accessed.

47. S. J. Lee, J. F. Edens, "Exploring predictors of institutional misbehavior among male Korean inmates", Criminal Justice and Behavior, vol. 32, no. 4, pp. 412-414, 2005.

48. "Terror tape targets Melbourne", The Australian, Sept. 2005.

49. K. Michael, A. Masters, "The advancement of positioning technologies in defense intelligence" in Applications of Information Systems to Homeland Security and Defense, U.K., London: IDG Press, pp. 193-201, 2005.

50. A. M. Piehl, B. Useem, J. J. DiIulio, Right-sizing justice: A cost-benefit analysis of imprisonment in three states, 1999, [online] Available: http://www.manhattan-institute.org/html/ cr_8.htm, accessed.

51. J. Scheeres, "Tracking Junior with a microchip", Wired News, 2003, [online] Available: http://www. wired.com/news/technology/0,1282,60771,00. html, accessed.

52. M. Millanvoye, "Teflon under my skin", UNESCO, 2001, [online] Available: http://www.unesco.org/courier/2001_07/uk/doss41.htm.

53. Computers Ethics and Society, NY, New York:Oxford Univ. Press, pp. vi, 2002.

54. E. Adler, J. L. Bachant, "Intrapsychic and interactive dimensions of resistance: A contemporary perspective", Psychoanalytic Psychology, vol. 15, no. 4, pp. 451-454, 1998.

55. N. Gilmore, "PM defends anti-terrorism laws", Lateline, 2005, [online] Available: http://www.abc.net.au/ lateline/content/2005/s1456384.htm.

56. "Terror laws shouldn't go overboard: Evans", The Sydney Morning Herald, 2005, [online] Available: http:// www.smh.com/au/news/national/terror-laws-shouldnt-go-overboard-evans/2005/09/27/ 1127586836368.html?from=moreStories.

57. M. Wilkinson, "Powers pave way for secret new world", The Sydney Morning Herald, pp. 1-6, Sept. 2005.

58. J. Kerr, "House arrest for terror suspects", The Sydney Morning Herald, pp. 1, Sept. 2005.

59. H. E. Marano, "Trust someone again", Psychology Today, vol. 31, no. 4, pp. 7, 1998.

60. T. Mizrahi, "How can you learn to trust again", Psychology Today, vol. 35, no. 2, pp. 12, 2002.

61. J. A. Perolle, "Computer-supported cooperative work" in Computers Surveillance and Privacy, MN, Minneapolis:Univ. of Minnesota Press, pp. 47-59, 1996.

62. J. Weckert, "Trust and monitoring in the workplace", Proc. IEEE International Symposium on Technology and Society, pp. 245, 2000.

63. J. Lipscombe, B. Williams, Are Science and Technology Neutral, U.K., Manchester:Univ. of Manchester, pp. 19, 1979.

64. L. Winner, Autonomous Technology: Technics-out-of-Control as a Theme in Political Thought, MA, Cambridge:M.I.T. Press, pp. 76, 1977.

65.E. Braun, Futile Progress: Technology's Empty Promise, U.K., London:Earthscan, pp. 21, 1995.

66. T. P. Hughes, Technological momentum in Does Technology Drive History?, MA, Cambridge:M.I.T. Press, pp. 101, 1994.

67. D. Lyon, Surveillance Society: Monitoring Everyday Life Berkshire, U.K.:Open Univ. Press, pp. 23-24, 2001.

68. "Power outage hits Auckland hours after crisis declared over", CNN World News, 1998, [online] Available: http://www.cnn.com/WORLD/9803/27/ auckland.outage/.

69. K. Westcott, "New York's good and bad blackouts", BBC News, 2003, [online] Available: http://news.bbc. co.uk/1/hi/world/americas/3154757.stm.

70. P. Bereano, "Technology is a tool of the powerful" in Computers Ethics and Society, NY, New York:Oxford Univ. Press, pp. 85, 2003.

71. G. T. Marx, Undercover: Police Surveillance in America, U.K., Berkeley:Univ. of California Press, 1988.

72. L. G. Kun, "Homeland security: the possible probable and perils of information technology", IEEE Engineering in Medicine and Biology, vol. 21, no. 5, pp. 28-33, 2002.

73. L. Perusco, K. Michael, M. G. Michael, "Location-based services and the privacy-security dichotomy", Proc. Third Int.Conf. on Mobile Computing and Ubiquitous Networking, 2006.

74. R. Kling, "The seductive equation of technological progress with social progress" in Computerization and Controversy: Value Conflicts and Social Choices, MA, Boston:Academic, pp. 22-23, 1996.

75. The Annotated Alice, NY, New York:Penguin, pp. 88, 1970.

76. P. Jessen, Technology Assessment: Creative Futures, MI, Ann Arbor:Univ. of Michigan Press, pp. 245-246, 1980.

Acknowledgment

The authors would like to acknowledge the significant contribution of Dr. M.G. Michael, Honorary Fellow at the School of Information Systems and Technology at the University of Wollongong and a member of the IP Location-Based Services Research Program.

Keywords

Privacy, Security, Ethics, Technological innovation, Social implications of technology, Animals, Mission critical systems, Radio frequency, Radiofrequency identification, Uncertainty, security of data, data privacy, mobile computing, privacy-security dichotomy, location-based services, scenario planning, security risk, privacy risk

Citation: Laura Perusco, Katina Michael, "Control, trust, privacy, and security: evaluating location-based services", IEEE Technology and Society Magazine, Vol. 26, No. 1, Spring 2007, pp. 4 - 16.