Sociology of the docile body

Abstract

Discipline and Punish: The Birth of the Prison (Penguin Social Sciences): Michel Foucault, Alan Sheridan: 8601404245756: Books

Embedded radio-frequency identification, sensor technologies, biomedical devices and a new breed of nanotechnologies are now being commercialized within a variety of contexts and use cases. As these technologies gather momentum in the marketplace, consumers will need to navigate the changing cybernetic landscape. The trichotomy facing consumers are: (1) to adopt RFID implants as a means of self-expression or to resolve a technological challenge; (2) to adopt RFID implants for diagnostic or prosthetic purposes to aid in restorative health; as well as considerations (3) for enforced adoption stemming from institutional or organizational top-down control that has no direct benefit to the end-user. This paper uses the penal metaphor to explore the potential negative impact of enforced microchipping. The paper concludes with a discussion on the importance of protecting human rights and freedoms and the right to opt-out of sub-dermal devices.

Section I. Introduction

Radiofrequency identification (RFID) implant technology, sensor technology, biomedical devices, and nanotechnology continue to find increasing application in a variety of vertical markets. Significant factors leading to continued innovation include: convergence in devices, miniaturisation, storage capacity, and materials. The most common implantable devices are used in the medical domain, for example, heart pacemakers and implantable cardioverter defibrillators (ICDs). In non-medical applications, implantable devices are used for identification, [close-range] location and condition monitoring, care and convenience use cases [1].

RFID implants can be passive or active, and predominantly have a function to broadcast a unique ID when triggered by a reader within a specific read range. Sensors onboard an RFID device can, for instance, provide additional data such as an individual's temperature reading, pulse rate and heart rate. Biomedical devices usually have a specific function, like the provision of an artificial knee or hip, and can contain RFID and other specific sensors. An example cited in Ratner & Ratner that demonstrates the potential for nanotechnology to bring together RFID, sensors, and the biomedical realms is to inject nanobots into a soldier's bloodstream. “The sensors would circulate through the bloodstream and could be monitored at a place where blood vessels are closest to the surface, such as the eye… While quite invasive, so-called in vivo sensors could also have other uses in continually monitoring the health of a soldier” [2], p. 42f.

The next step in the miniaturization path for RFID microchips is nanotechnology, which allows for working at the nanoscale, that is the molecular level [3] p. 90. Humancentric implants are discussed [4], pp. 198-214, in the context of nanotechnology ethical and social implications. Regardless of the breakthroughs to come in these humancentric embedded surveillance devices (ESDs), we will soon be moving the discussion beyond, merely how the technologies are aiding humanity, regardless of whether such technologies are mobilized to aid human health or impair it. The fundamental concerns will rest within human willingness to adopt the technology, and not in what the technology claims to eradicate in and of itself. In order to later contextualize the issues surrounding human rights of refusal, this paper will now present a material view of implantable technologies in their nascent stage. A clear distinction will be made between nanotechnologies that can be used as a mechanism of control versus, for example, bio-medical technologies that are freely chosen and designed for the sole purpose of improving human health with no benefit extending beyond the aid of the individual.

Section II. Previous Work

Although cybernetic technologies have boundless potential to surface under an array of interchangeable names, for the purpose of this paper, RFID implants will be investigated given the degree of global attention they have experienced [5]–[6][7][8]. In Western civilization, RFID is being used for tracking merchandise and similar devices are used in our family pets to locate them should they roam astray [9]. Now the RFID is being considered for 24-7 human location monitoring. In order to offer a pragmatic perspective, which does not deviate from one source of research to the other, Hervé Aubert's 2011 article entitled, “RFID technology for human implant devices” [10] is utilized as the primary source of data given its seminal contribution to the field.

A. Experimental Stages of Cybernetic Innovations

Aubert investigates one type of RFID known as the VeriChip™; which is a device presently engineered to provide a data-bank of important records on the individual [5], in particular on the application of a personal health record for high-risk patients (PHR) [11], [12]. In addition, this implantable RFID that is known for its remote identification of persons or animals is being considered for the purpose of protective human surveillance [13]. RFID devices are not only being considered for identifying and locating humans, but for its potential to “remotely control human biological functions” [10], [14], p. 676. According to Aubert, this nano-technology is not conducive as a ‘spychip’ with current-day technologies, as it cannot successfully be connected to a Global Positioning System (which offers real-time tracking), as the GPS would require an implant that far surpasses the size capacity of what could be realistically embedded in the human body, and would therefore defeat the notion of a submicron global surveillance system for monitoring human activity. However, there is nothing to say that off-body data receivers, powered by wireless supplies, cannot be stationed short-range to monitor passive responders, such as subdermal RFID's [15]–[16][17]. Currently the anticipated range is dependent on the inductive coupling measured in MHz [5].

Aubert concludes his findings by arguing that RFID are not suitable for real-time tracking of humans as its capability to transmit the location of the body is too limited in range, permitting receivers to only read passive implanted devices within a free space range of 10 cm or less. This limitation makes communication with GPS satellites in an attempt to locate bodies impossible. Once again, this is not to refute the claim that interrogators, stationed territorially, can transmit its data to a centralized global positioning system inversely. Regardless, researchers are arguing nanotechnologies “[w]ill not exclusively revolve around the idea of centralization of surveillance and concentration of power, […but its greatest potential for negative impact will be centred around] constant observation at decentralized levels” [18], p. 283. In addition, depending on the context, monitoring does not have to be continuous but discrete to provide particular types of evidence. It may well be enough to read an RFID at a given access node point (either on entry or exit), or to know that a given unique ID is inside a building, or even headed in a given direction [19]. Two or more points of reading also can provide intricate details about distance, speed, and time, as equipment readers have their own GPS and IP location [20], [21]. It will be simple enough to tether an implant to a mobile phone or any other device with an onboard GPS chipset. Nokia, for instance, had an RFID reader in one of its units 2004 handsets [22].

Although such technologies are far from perfected, at least to the degree of synoptic centralization, with the exception of concerns surrounding information privacy, subdermal implants that are being designed for surveillance of humans is being identified as a central ethical challenge [23]. In particular, this is an ethical challenge because subdermal chips may be either injected or external tags worn on the body such as a PayBand [24] or FitBit. This in itself is not what is creating the most obvious challenge but rather that such devices have the potential to be implemented with or without the individual's consent and, therefore, provoking discussion around the need to legislate to keep pace with technological advances [25]. Although the chip is being suggested for use in a number of ways, bioethicists suggest that prior to these new applications of nanotechnologies becoming a present day reality, “[w]e need to examine carefully the very real dangers that RFID implants could pose to our privacy and our freedom” [5], p. 27. Despite this concern, skin-embedded devices are being employed in a multiplicity of ways, more recently by the biohacking communities who are increasingly commercialising their ideas and prototypes [26].

Aubert lists various possible health benefits of embedded RFID chips, such as the following: “[t]o transmit measurements of chemical or biological data inside the body”, as well as “[m]onitor biological activity” while modifying physiological functions and offer various therapeutic means, such as patient monitoring, such as for glucose concentrations of patients with diabetes [10], p. 676. Another possible health benefit is the potential for monitoring brain activity through “[t]ransponders embedded within the skull”, [10], p. 681. Increasingly implants are being used in techniques such as deep brain stimulation (DBS) and vagus nerve stimulation (VNS) to treat a variety of illnesses [27]. As outlined in Aubert's 2011 article, these transponders communicate with implanted probes, enabling the transmittal of localized microstimulation to be administered in response to neuron signals sent.

At this point, it becomes necessary to distinguish that which is engineered to monitor human organs and is freely adopted as a mechanism to improve one's health to that which is in effect through a top-down implementation, in which the individual is given no choice pertaining to adoption. These two scenarios have been demonstrated in a TEDx talk delivered by Katina Michael in 2012 within the “convenience/care” versus “control” contexts [28].

B. Human Versus Machine

Docile Bodies | Vestoj A Chain Gang in South Carolina, c. 1929 - 1931. Doris Umann. http://vestoj.com/docile-bodies/

There is a needful distinction between human and machine. Deciphering between biomedical technology designed for example, to improve human health, or as a means of self-expression (all of which are freely chosen by the individual), versus those designed for a benefit external to the individual and has the ability to be used as a mechanism of control over the citizen. For example, a heart monitor, created to sustain a human, is designed only with the intention to benefit the patient in a life sustaining way; such a device has no apparatus external from this cause that could be used to invoke power over the individual and therefore it is designed with no additional mandate other than improving or maintaining the individual's health [29]. Generally, the decision for adopting such a biomedical implant device is determined by the patient and in most developed nations using a process of consent. Because such a device currently has no mechanism for top-down control, stakeholders (i.e., hospitals, medical device purchasers, inbound logistics managers or buyers) do not have a hidden agenda for adoption. This type of bio-medical device currently possesses no ability to monitor any type of human activity that could contribute to an imbalance of power for the consumer over the user (in this instance the patient).

More recently, one of the largest suppliers of biomedical devices, Medtronics, has begun to blur the line between devices for care and devices for control. Apart from the hard line that most manufacturers of implants hold on who owns the data emanating from the device [30], companies specialising in biomedical devices are now beginning to engage with other secondary uses of their implants [31]. Just like wearable devices, such as the FitBit, are now being used for evidentiary purposes, it will not be long before biomedical devices originally introduced for prosthetic or diagnostic purposes will be used to set individualised health insurance premiums, and more. As noted by [29], even in care-related implant applications, there is an underlying dimension of control that may propel function creep or scope creep. These are the types of issues that bring science and the arts together. George Grant wrote [32], p. 17:

The thinker who has most deeply pondered our technological destiny has stated that the new copenetrated arts and sciences are now proceeding to the apogee of their determining power around the science of cybernetics; […] the mobilization of the objective arts and sciences at their apogee comes more and more to be unified around the planning and control of human activity.

Section III. Research Approach

Hence, while it is important to understand the trichotomy of skin-embedded technologies-deciphering between technology adoption which can be seen as a post-modern indicator of the autonomous self-exercising human rights [33], to that of acceptable bio-Western technologies with its sole function to improve one's existing health conditions (that is also freely chosen of the individual), versus technology which have potential to be used as mechanisms of organizational control-implanted through imposed order [34]. When disambiguating the way in which technology can be used, it is most essential to understand that this differentiation requires no thorough understanding of the purpose of the biotechnology or its utility as the plumb line rests alone, not on the trichotomy of the technology's utility but within the individual's moral freedom and human rights to accept or refuse. Therefore, the plumb line remains, not concerning the device's distinct utility, but rather with freedom of choice.

Currently, the question is being posed as to whether legislation will keep pace, which suggests that either a higher articulation of our former constitution is required or that new legislation be erected that will explicitly defend the rights of the individual to choose for oneself [35].

The ways in which sub-dermal technology may aid correctional facilities' endeavors will be more thoroughly expounded on in the next section. A historical look at a specific top-down and bottom-up institution will be examined, not as a raw set of material facts but, in order to create an inference between the way in which the incremental process of correctional ideologies are the prevailing influence of today and are promoting the individual's outward gaze to self-censorship [36]. Some researchers are arguing it is highly improbable that laws will be erected to enforce subdermal devices, with the exception of use in criminals [37]. Therefore, this next section is being devoted to an investigation of the penal system.

Section IV. The Penal Metaphor

Because the prisoner is being noted as the central focus as a possible industry enroot to legalizing the implementation of sub-dermal RFID's, it becomes imperative to investigate the penal system from an ideological perspective in order to assess its susceptibility [38], pp. 157-249; [39], p. 35. This paper will conclude that there needs to be a distinction between spatial autonomy and moral autonomy as moral freedom is of the higher good and rights to obtain unto this good supersedes loses that could be incurred as a result of the state invoking disciplinary measures [32].

Generation after generation civilization oscillates over freedom of choice, blurring the distinction between freely adopting governing rules of belief, following an individualized interrogation of the ethical underpinnings, versus conforming to systematic ruling government without understanding its fundamental doctrine. Often such systems strive to maintain order through imposing indoctrinations, in which its people accept the ideologies of the dominant class through a constant infiltration of information not conducive to independent thinking of the autonomous self; it is argued that when this knowledge becomes singular it is a form of soft-despotism [40]. Through various mechanisms of social control, such as through a prevailing slant being propagated through the media, it has led an onslaught of persons embodied in space to a place where the individual is losing ability to see the distinction and whereby choose for oneself. The specific slant contained within the dominant message is directing Western society to a place imbued with an external message with its constancy softly-coercing the viewer or listener in one specific direction [32].

A. A Look at the System as an Apparatus of Control

As the high-tech industry evolves, the media continues to endorse such change and those adopting a consumerist mentality continue to commoditize their own body as a source of consumer capitalism [41] through the latest technological upgrade. It will only stand to logic that human adaptation to body modifying devices will become more and more acceptable as a means to live within society, function in commerce and progress in self-actualization [42]. The authors of this paper argue that when any such movement coerces the people in one specific direction it is a form of soft-despotism whether invoked intentionally or otherwise [40].

It is within this investigation of the governing forces over the masses that the focus is taken away from the history of the penal institution in itself to the state's reliance on cumulative rationale. Theorists argue that it is this over reliance on human rationale that is propelling history in one specific direction and thus becomes the force that is evoking a certain type of social order and governance [43].

In order to elucidate Ann Light's notion of how biotechnology can turn us from outside within, she first turns our attention to the penal system [36]. Theorists argue that the open persecution of punishment found within the penal process has radically shifted to become less detectable and more hidden [44]. This is a far cry from the open persecution experienced by, let us say, Joan of Arc [45], as now, largely due to humanitarianism, the public spectacle of the executioner who leads the persecuted to the stake appears an equivalent act of savagery to the public who witnessos, as is the crime itself [44]. Hence the mechanism becomes more hidden and in this sense is argued to be less pervasive [44]. But is it?

Theorists view the apparatus of the persecutor as moving from control over the body to a much more sophisticated apparatus, which slackens the hold on the tangible physical body in exchange for a far more intricate part of the self. This shifts the focus from the external body to the human mind, which is considered as the seat of the soul and the final battleground [46]. Theorists go on to state that these more sophisticated systems of control will only be confirmed to actually exist as history unfolds [36].

The panoptic, for example is a model that can be deemed as a control mechanism which is less pervasive as it moves away from physical punishment to psychological punishment [44]. Specifically the sanctioned individual who believes the monitoring of one's behavior to be constant, whereby shifting the focus of what is believed to be periodic surveillance to a continual presence. The constancy found in this form of surveillance is argued to imprint permanence on the human cognition [36]. It is what M.G. Michael has termed uberveillance—a type of big brother on the inside looking out [47]. In order that the reader may have a clearer understanding of the Panopticon, below is a description of Bentham's institution:

“The hollow interior of the circular Panopticon has an incongruous resemblance to a dovecote with all the doves behind bars. The prisoners' cells are in the circumference, but are open at all times to inspection from the observation tower in the center of the building. The theory of the Panopticon relies on the fiction that each prisoner, alone in his cell, believes that he is under constant observation: yet it is patently impossible that the contractor and his small staff within the central tower could watch 3, 000 prisoners at once. So that the prisoners may not know whom he is watching, or whether he is present at all, the contractor must at all times be invisible; and Bentham thought much about deceptive lighting systems to preserve the illusion of the contractor's permanent presence, a “dark spot” at the center of the Panopticon. Observation of a single prisoner for several hours, followed by punishment for any misdemeanors, would convince all the rest of this constant vigilance. Although the contraptions such as Venetian blinds, pinholes and speaking tubes which delighted Bentham have lost some technological credibility, the general principle is readily applicable to modern methods of surveillance” [48], pp.4-5.

Upon reviewing the detailed description of the institution designed by Bentham, it is easy to see how the panoptic system supports the shift from the body to the mind, which then turns the imprisoned body's gaze inward [36]. Out of fear of punishnent, the embodied experience is to begin to self-monitor.

Although some argue Bentham's Panopticon never came to fruition, Michael Ignatieff views it as a “[s]ymbolic caricature of the characteristic features of disciplinary thinking [of] his age” [48], p. 5. Crowther argues:

[According to] Bentham, the Panopticon was not an enclosed relationship between the prisoner and the state, removed from the outside world, but a prison constantly open to public scrutiny. The contractor in his watchtower could be joined at any minute not only by magistrates, but by the prisoners' relatives, the curious, or the concerned, “The great open committee of the tribunal of the world.

This invokes two types of control of the incarcerated; according to sociology theorists, a top down approach to surveillance is referred to organizational surveillance, whereas a bottom-up approach in which the common citizen becomes the watch-guard is referred to as inverse [49]. Bentham became aware of the possible negative impact that constant surveillance of the state and the public could produce on the prisoners' sensibilities, and therefore suggested that the prisoner wear a disguise. The mask would conceal the individual's identity while each unique disguise, would represent the crime that was committed. Hence, Bentham did make a frail attempt to resolve the way in which the apparatus' constancy could impair one's well-being [48].

The Panopticon illustrated here is merely representational, as the physical apparatus of control is being reflected upon as a means of the reader relating to the modem-day ideological shift within organizational control that is designed to turn the gaze of the end-user, the prisoner, and such, to self-monitoring. Western civilization that once employed an external gaze that had previously sought a voice in politics, for instance, is being turned from outside within. According to Ann Light [36], digital technology is promoting this shift.

Section V. Discussion

A. The Impact of Bio-Tech Constancy on the Human Psyche

Whether this surveillance transpires every moment of every day [50], or just in the sanctioned individual's mind is of little importance as it is the unknown or fear of what is “ever-lurking” that has the greatest potential to negatively impact the human psyche. When the interrogator is no longer human but the receptor is a machine there is something even more demoralizing that transpires as the removing of human contact can be likened to placing the prisoner in a type of mechanical quarantine [36], [51].

Embedded surveillance devices (although currently only engineered to accommodate short-range, such as within a correctional facility), can be considered as the all-seeing pervasive eye, the interrogator. However, the individual being tracked may lack knowledge about what is on the other side; which is the receptor. This can create a greater monster than real-life as it adds insurmountable pressure due to the unknown and the inability to understand the boundaries and limitations of the surveillance technology. This becomes that much more of an infringement when the device is placed under the individual's skin. Illustratively speaking, rather than seeing it as it is, such as, a mark of servitude, a passive information bank, a personal identifier, or a location monitor, the inductive coupling device has potential to be mistakenly deemed as the predator. In support of this notion, modern-day scholars are referring to the reader as the interrogator.

As earlier stated, in this instance, the external public gaze of the community and the state will shift from the external all-seeing eye, to that which is internalized—regardless of whether the device is passive or active. Over and above Foucault's notion of self-policing, this process could be further accentuated due to the person's inability to comprehend the full purpose or limitations of the surveillance ID system in which they are under. This internalization has potential to create a feeling of “the beast within” rather than the threat being from without. The writers of this paper argue that this form of internalization of the gaze within the body will heighten the negative impact on one's psyche—ultimately negatively impacting one's state of consciousness [52].

In this sense Bentham's panoptic vision was never really defeated but now merely considered at a higher level of sophistication or barbarianism—depending on which way it is looked upon. Rather than institutions embracing practices designed to rehabilitate the prisoner, and bring the individual to an eventual state of freedom, bio-tech adoption could impair in the recovery process—its constancy heightening psychological fears—making it near impossible to ever be disabled within the mind of the end-user. Hence, as Bentham's notion of a free-enterprise is accepted on a much more hidden level, and the self turns to policing one's own actions, this utter enclosure can be argued to lead the human body to a state of utter docility. This is a subject of debate for psychologists, bioethicists and social scientists alike, and in support of the phenomenologist must also include the insider's perspective as well.

Section VI. Conclusion

Imprisonment is transpiring on many levels, and can be argued as being the system that has led Western civilization incrementally to the place it is today, where moral relativism is ruling the people, causing the moral voice of conviction designed for political and public engagement, to be displaced for a turning inward to oneself as a forms of self-expression [34]. This may be seen as the result of top-down governing institutes esteeming systematic rationale over the individuals' voice—inadvertently marginalizing the embodied-self over other forces such as the economy. As the ruling system continues to over extend its control, it ever-so-gently coerces society in one direction only, massaging the spirit of Epicureanism which endorses human passion to have it full reign over one's own body, as the final self-embodied means of conveying a message. Whereas the governing institutions can easily rule over a docile society. In this sense bio-tech with its constancy may be seen as just one more apparatus designed to control the mind—although hidden, it most certainly is invasive. With current considerations for adoption it brings Orwell's claim to the forefront when he wrote in 1984: “Nothing was your own except the few cubic centimetres inside your skull” [53], p. 27.

References

1. K. Michael, A. Masters, "Applications of human transponder implants in mobile commerce", Proceedings of the 8th World Multiconference on Systemics Cybernetics and Informatics, pp. 505-512, 2004.

2. D. Ratner, M. A. Ratner, Nanotechnology and Homeland Security, New Jersey:Prentice Hall, 2005.

3. M. H. Fulekar, Nanotechnology: Importance and Applications, New York:I K International Publishing House, 2010.

4. F. Allhoff et al., What is Nanotechnology and Why Does it Matter? From Science to Ethics, West Sussex: Wiley Blackwell, 2010.

5. K. R. Foster, J. Jaeger, "RFID inside - The murky ethics of implanted chips", IEEE Spectrum, vol. 44, pp. 24-29, 2007.

6. A. Masters, K. Michael, "Lend me your arms: The use and implications of humancentric RFID", Electronic Commerce Research and Applications, vol. 6, pp. 29-39, 2007.

7. K. Michael, M. G. Michael, "The diffusion of RFID implants for access control and epayments: a case study on Baja Beach Club in Barcelona", IEEE Symposium on Technology and Society, pp. 242-252, 2010.

8. K. Michael, M. G. Michael, J. Pitt, "Implementing ‘Namebars’ Using Microchip Implants: The Black Box Beneath the Skin" in This Pervasive Day: The Potential and Perils of Pervasive Computing, London:Imperial College London Press, pp. 163-206, 2010.

9. W. A. Herbert, "No Direction Home: Will the Law Keep Pace With Human Tracking Technology to Protect Individual Privacy and Stop Geoslavery", Law and Policy for the Information Society, vol. 2, pp. 436, 2006.

10. H. Aubert, "RFID technology for human implant devices", Comptes Rendus Physique, vol. 12, pp. 675-683, 2011.

11. K. Michael et al., "Microchip implants for humans as unique identifiers: a case study on VeriChip", Conference on Ethics Technology and Identity (ETI), pp. 81-84, 2008.

12. K. Michael, "The technological trajectory of the automatic identification industry: the application of the systems of innovation (SI) framework for the characterisation and prediction of the auto-ID industry", 2003.

13. A. Masters, K. Michael, "Lend me your arms: The use and implications of humancentric RFID", Electronic Commerce Research and Applications, vol. 6, pp. 29-39, 2007.

14. M. Michaud-Shields, "Personal Augmentation – The Ethics and Operational Considerations of Personal Augmentation in Military Operations", Canadian Military Journal, vol. 15, 2014.

15. "JOVIX", GPS vs. RFID, May 2016, [online] Available: http://atlasrfid.com/jovix-education/auto-id-basics/gps-vs-rfid/.

16. M. Roberti, Has RFID Been Integrated With GPS?, September 2016, [online] Available: http://www.rfidjournal.com/blogs/experts/entry?10729.

17. R. Ip et al., "Location and Interactive services not only at your fingertips but under your skin", IEEE International Symposium on Technology and Society, pp. 1-7, 2009.

18. J. van den Hoven, P. E. Vermaas, "Nano-Technology and Privacy: On Continuous Surveillance Outside the Panopticon", Journal of Medicine & Philosophy, vol. 32, pp. 283-297, 2007.

19. K. Michael, T. Y. Chew, Locat'em: Towards Hierarchical Positioning Systems, 2005, [online] Available: http://works.bepress.com/kmichael/145/.

20. K. Michael et al., "The emerging ethics of humancentric GPS tracking and monitoring", International Conference on Mobile Business, pp. 34-44, 2006.

21. K. Michael et al., "Location-Based Intelligence - Modeling Behavior in Humans using GPS", Proceedings of the International Symposium on Technology and Society, pp. 1-8, 2006.

22. B. Violino, Nokia Unveils RFID Phone Reader, March 2004, [online] Available: http://www.rfidjournal.com/articles/view?834.

23. K. Michael, M. G. Michael, "The social cultural religious and ethical implications of automatic identification", Proceedings of the Seventh InternationalConference in Electronic Commerce Research, pp. 433450, 2004.

24. D. Buckey, DirectCash Payments Inc. Announces Launch of DC TAG, August 2015, [online] Available: http://pay.band/tag/visa-paywave/.

25. A. Friggieri et al., "The legal ramifications of microchipping people in the United States of America-A state legislative comparison", International Symposium on Technology and Society, pp. 1-8, 2009.

26. L. McIntyre et al., "RFID: Helpful New Technology or Threat to Privacy and Civil Liberties?", IEEE Potentials, vol. 34, pp. 13-18, 2015.

27. K. Michael, "Mental Health Implantables and Side Effects", IEEE Technology and Society Magazine, vol. 34, pp. 5-7, 2015.

28. K. Michael, TEDxUWollongong: Microchipping People, May 2012, [online] Available: https://www.youtube.com/watch?v=fnghvVR5Evc.

29. A. Masters, K. Michael, "Humancentric applications of RFID implants: the usability contexts of control convenience and care", The Second IEEE International Workshop on Mobile Commerce and Services, pp. 32-41, 2005.

30. N. Olson, Joseph Carvalko, A Review of The TechnoHuman Shell, December 2013, [online] Available: http://ieet.org/index.php/IEET/print/8510.

31. E. Strickland, Medtronic Wants to Implant Sensors in Everyone, June 2014, [online] Available: http://spectrum.ieee.org/techtalk/biomedical/devices/medtronic-wants-to-implant-sensors-ineveryone.

32. G. Grant, Technology & Justice, Ontario:House of Anansi Press Ltd, 1986.

33. S. R. Bradley-Munn, K. Michael, "Whose Body Is It? The Body as Physical Capital in a Techno-Society", IEEE Consumer Electronics Magazine, vol. 5, 2016.

34. S. R. Bradley-Munn et al., "The Social Phenomenon of BodyModifying in a World of Technological Change: Past Present Future" in IEEE Norbert Wiener, Melbourne:, 2016.

35. Y. Poullet, "Data protection legislation: What is at stake for our society and democracy?", Computer Law and Security Review, vol. 25, pp. 211-226, 2009.

36. A. Light, "The Panopticon reaches within: how digital technology turns us inside out", Identity in the Information Society, vol. 3, pp. 583-598, 2010.

37. K. Johnson et al., "Consumer Awareness in Australia on the Prospect of Humancentric RFID Implants for Personalized Applications", The Sixth International Conference on Mobile Business, 2007.

38. D. Klitou, Privacy-Invading Technologies and Privacy by Design: Safeguarding Privacy Liberty and Security in the 21st Century, London:Springer, 2014.

39. M. N. Gasson et al., Human ICT Implants: Technical Legal and Ethical, The Hague: Springer, 2012.

40. P. A. Rahe, Soft Despotism Democracy's Drift: What Tocqueville Teaches Today, New Haven:Yale University Press, 2009.

41. C. Klesse, C. Malacrida, J. Low, "Part XIV: Consumer Bodies ‘Modern Primitivism’: Non-mainstream Body Modification and Racialized Representation" in Sociology of the Body: A reader, Don Mills, Ontario: Oxford University Press, 2008.

42. A. H. Maslow, "A Theory of Human Motivation", Psychological Review, vol. 50, pp. 370-396, 1943.

43. P. Rahe et al., Soft Despotism Democracy's Drift: What Tocqueville Teaches Today (The Heritage Foundation: First Principles Series Report #28 on Political Though), September 2009, [online] Available: http://www.heritage.org/research/reports/2009/09/softdespotism-democracys-drift-what-tocqueville-teaches-today.

44. M. Foucault, Discipline & Punish: The Birth of the Prison, New York: Vintage Books, 1977.

45. A. Williamson, Biography of Joan of Arc (Jeanne d'Arc), April 1999, [online] Available: http://joan-ofarc.org/joanofarc_biography.html.

46. F. Frangipane, The Three Battlegrounds: An In-Depth View of the Three Arenas of Spiritual Warfare: The Mind the Church and the Heavenly Places, Cedar Rapids: Arrow Publications, Inc., 1989.

47. K. Michael, M. G. Michael, From Dataveillance to Überveillance and the Realpolitik of the Transparent Society (The Social Implications of National Security, Wollongong:, 2007.

48. A. Crowther, "Penal Peepshow: Bentham's Prison that Never Was", Times Literary Supplement, vol. 23, pp. 4-5, February 1996.

49. T. Timan, N. Oudshoorn, "Mobile cameras as new technologies of surveillance? How citizens experience the use of mobile cameras in public nightscapes", Surveillance Society Journal, vol. 10, pp. 167-181, 2012.

50. B. Welsh, "The Entire History of You" in Black Mirror, UK:, 2011.

51. C. Malacrida, J. Low, Sociology of the Body: A Reader, Don Mills, Ontario:Oxford University Press, 2008.

52. K. Michael, J. Pitt et al., "Be Vigilant: There are Limits to Veillance" in The ComputerAfter Me, London:, pp. 189-204, 2014.

53. G. Orwell, London: Signet Classic, 1984.

Keywords: Radio-frequency identification, Implants, Biomedical monitoring, Global Positioning System, Surveillance, Context, social sciences, cybernetics, prosthetics, radiofrequency identification, docile body sociology, penal metaphor, institutional top-down control, organizational top-down control, restorative health, diagnostic purpose, prosthetic purpose, RFID implants, cybernetic landscape, nanotechnology, biomedical device, sensor technology, human rights, freedom of choice, opt-out, penal control, constancy

Citation: S.B. Munn, Katina Michael, M.G. Michael, "Sociology of the docile body", 2016 IEEE International Symposium on Technology and Society (ISTAS16), 20-22 Oct. 2016, Kerala, India, DOI: 10.1109/ISTAS.2016.7764047

Location and Tracking of Mobile Devices

Location and Tracking of Mobile Devices: Überveillance Stalks the Streets

Review Version of 7 October 2012

Published in Computer Law & Security Review 29, 3 (June 2013) 216-228

Katina Michael and Roger Clarke **

© Katina Michael and Xamax Consultancy Pty Ltd, 2012

Available under an AEShareNet  licence or a Creative Commons  licence.

This document is at http://www.rogerclarke.com/DV/LTMD.html

Abstract

During the last decade, location-tracking and monitoring applications have proliferated, in mobile cellular and wireless data networks, and through self-reporting by applications running in smartphones that are equipped with onboard global positioning system (GPS) chipsets. It is now possible to locate a smartphone-user's location not merely to a cell, but to a small area within it. Innovators have been quick to capitalise on these location-based technologies for commercial purposes, and have gained access to a great deal of sensitive personal data in the process. In addition, law enforcement utilise these technologies, can do so inexpensively and hence can track many more people. Moreover, these agencies seek the power to conduct tracking covertly, and without a judicial warrant. This article investigates the dimensions of the problem of people-tracking through the devices that they carry. Location surveillance has very serious negative implications for individuals, yet there are very limited safeguards. It is incumbent on legislatures to address these problems, through both domestic laws and multilateral processes.

Contents

1. Introduction

Personal electronic devices travel with people, are worn by them, and are, or soon will be, inside them. Those devices are increasingly capable of being located, and, by recording the succession of locations, tracked. This creates a variety of opportunities for the people concerned. It also gives rise to a wide range of opportunities for organisations, at least some of which are detrimental to the person's interests.

Commonly, the focus of discussion of this topic falls on mobile phones and tablets. It is intrinsic to the network technologies on which those devices depend that the network operator has at least some knowledge of the location of each handset. In addition, many such devices have onboard global positioning system (GPS) chipsets, and self-report their coordinates to service-providers. The scope of this paper encompasses those already-well-known forms of location and tracking, but it extends beyond them.

The paper begins by outlining the various technologies that enable location and tracking, and identifies those technologies' key attributes. The many forms of surveillance are then reviewed, in order to establish a framework within which applications of location and tracking can be characterised. Applications are described, and their implications summarised. Controls are considered, whereby potential harm to the interests of individuals can be prevented or mitigated.

2. Relevant Technologies

The technologies considered here involve a device that has the following characteristics:

  • it is conveniently portable by a human, and
  • it emits signals that:
    • enable some other device to compute the location of the device (and hence of the person), and
    • are sufficiently distinctive that the device is reliably identifiable at least among those in the vicinity, and hence the device's (and hence the person's) successive locations can be detected, and combined into a trail

The primary form-factors for mobile devices are currently clam-shape (portable PCs), thin rectangles suitable for the hand (mobile phones), and flat forms (tablets). Many other form-factors are also relevant, however. Anklets imposed on dangerous prisoners, and even as conditions of bail, carry RFID tags. Chips are carried in cards of various sizes, particularly the size of credit-cards, and used for tickets for public transport and entertainment venues, aircraft boarding-passes, toll-road payments and in some countries to carry electronic cash. Chips may conduct transactions with other devices by contact-based means, or contactless, using radio-frequency identification (RFID) or its shorter-range version near-field communication (NFC) technologies. These capabilities are in credit and debit cards in many countries. Transactions may occur with the cardholder's knowledge, with their express consent, and with an authentication step to achieve confidence that the person using the card is authorised to do so. In a variety of circumstances, however, some and even all of those safeguards are dispensed with. The electronic versions of passports that are commonly now being issued carry such a chip, and have an autonomous communications capability. The widespread issue of cards with capabilities uncontrolled by, and in many cases unknown to, the cardholder, is causing consternation among segments of the population that have become aware of the schemes.

Such chips can be readily carried in other forms, including jewellery such as finger-rings, and belt-buckles. Endo-prostheses such as replacement hips and knees and heart pacemakers can readily carry chips. A few people have voluntarily embedded chips directly into their bodies for such purposes as automated entry to premises (Michael & Michael 2009).

In order to locate and track such devices, any sufficiently distinctive signals may in principle suffice. See Raper et al. (2007a) and Mautz (2011). In practice, the signals involved are commonly those transmitted by a device in order to take advantage of wireless telecommunications networks. The scope of the relevant technologies therefore also encompasses the signals, devices that detect the signals, and the networks over which the data that the signals contain are transmitted.

In wireless networks, it is generally the case that the base station or router needs to be aware of the identities of devices that are currently within the cell. A key reason for this is to conserve limited transmission capacity by sending messages only when the targeted device is known to be in the cell. This applies to all of:

  • cellular mobile originally designed for voice telephony and extended to data (in particular those using the '3G' standards GSM/GPRS, CDMA2000 and UMTS/HSPA and the '4G' standard LTE)
  • wireless local area networks (WLANs, commonly Wifi / IEEE 802.11x - RE 2010a)
  • wireless wide area networks (WWANs, commonly WiMAX / IEEE 802.16x - RE 2010b).

Devices in such networks are uniquely identified by various means (Clarke & Wigan 2011). In cellular networks, there is generally a clear distinction between the entity (the handset) and the identity it is adopting at any given time (which is determined by the module inserted in it). Depending on the particular standards used, what is commonly referred to as 'the SIM-card' is an R-UIM, a CSIM or a USIM. These modules store an International Mobile Subscriber Identity (IMSI), which constitutes the handset's identifier. Among other things, this enables network operators to determine whether or not to provide service, and what tariff to apply to the traffic. However, cellular network protocols may also involve transmission of a code that distinguishes the handset itself, within which the module is currently inserted. A useful generic term for this is the device 'entifier' (Clarke 2009b). Under the various standards, it may be referred to as an International Mobile Equipment Identity (IMEI), ESN, or MEID.

In Wifi and WiMAX networks, the device entifier may be a processor-id or more commonly a network interface card identifier (NIC Id). In various circumstances, other device-identifiers may be used, such as a phone-number, or an IP-address may be used as a proxy. In addition, the human using the device may be directly identified, e.g. by means of a user-accountname.

A WWAN cell may cover a large area, indicatively of a 50km radius. Telephony cells may have a radius as large as 2-3 km or as little as a hundred metres. WLANs using Wifi technologies have a cell-size of less than 1 hectare, indicatively 50-100 metres radius, but in practice often constrained by environmental factors to only 10-30 metres.

The base-station or router knows the identities of devices that are within its cell, because this is a technically necessary feature of the cell's operation. Mobile devices auto-report their presence 10 times per second. Meanwhile, the locations of base-stations for cellular services are known with considerable accuracy by the telecommunications providers. And, in the case of most private Wifi services, the location of the router is mapped to c. 30-100 metre accuracy by services such as Skyhook and Google Locations, which perform what have been dubbed 'war drives' in order to maintain their databases - in Google's case in probable violation of the telecommunications interception and/or privacy laws of at least a dozen countries (EPIC 2012).

Knowing that a device is within a particular mobile phone, WiMAX or Wifi cell provides only a rough indication of location. In order to generate a more precise estimate, within a cell, several techniques are used (McGuire et al. 2005). These include the following (adapted from Clarke & Wigan 2011. See also Figueiras & Frattasi 2010):

  • directional analysis. A single base-station may comprise multiple receivers at known locations and pointed in known directions, enabling the handset's location within the cell to be reduced to a sector within the cell, and possibly a narrow one, although without information about the distance along the sector;
  • triangulation. This involves multiple base-stations serving a single cell, at known locations some distance apart, and each with directional analysis capabilities. Particularly with three or more stations, this enables an inference that the device's location is within a small area at the intersection of the multiple directional plots;
  • signal analysis. This involves analysis of the characteristics of the signals exchanged between the handset and base-station, in order to infer the distance between them. Relevant signal characteristics include the apparent response-delay (Time Difference of Arrival - TDOA, also referred to as multilateration), and strength (Received Signal Strength Indicator - RSSI), perhaps supplemented by direction (Angle Of Arrival - AOA).

The precision and reliability of these techniques varies greatly, depending on the circumstances prevailing at the time. The variability and unpredictability result in many mutually inconsistent statements by suppliers, in the general media, and even in the technical literature.

Techniques for cellular networks generally provide reasonably reliable estimates of location to within an indicative 50-100m in urban areas and some hundreds of metres elsewhere. Worse performance has been reported in some field-tests, however. For example, Dahunsi & Dwolatzky (2012) found the accuracy of GSM location in Johannesberg to be in the range 200-1400m, and highly variable, with "a huge difference between the predicted and provided accuracies by mobile location providers".

The web-site of the Skyhook Wifi-router positioning service claims 10-metre accuracy, 1-second time-to-first-fix and 99.8% reliability (SHW 2012). On the other hand, tests have resulted in far lower accuracy measures, including an average positional error of 63m in Sydney (Gallagher et al. 2009) and "median values for positional accuracy in [Las Vegas, Miami and San Diego, which] ranged from 43 to 92 metres ... [and] the replicability ... was relatively poor" (Zandbergen 2012, p. 35). Nonetheless, a recent research article suggested the feasibility of "uncooperatively and covertly detecting people 'through the wall' [by means of their WiFi transmissions]" (Chetty et al. 2012).

Another way in which a device's location may become known to other devices is through self-reporting of the device's position, most commonly by means of an inbuilt Global Positioning System (GPS) chip-set. This provides coordinates and altitude based on broadcast signals received from a network of satellites. In any particular instance, the user of the device may or may not be aware that location is being disclosed.

Despite widespread enthusiasm and a moderate level of use, GPS is subject to a number of important limitations. The signals are subject to interference from atmospheric conditions, buildings and trees, and the time to achieve a fix on enough satellites and deliver a location measure may be long. This results in variability in its practical usefulness in different circumstances, and in its accuracy and reliability. Civil-use GPS coordinates are claimed to provide accuracy within a theoretical 7.8m at a 95% confidence level (USGov 2012), but various reports suggest 15m, or 20m, or 30m, but sometimes 100m. It may be affected by radio interference and jamming. The original and still-dominant GPS service operated by the US Government was subject to intentional degradation in the US's national interests. This 'Selective Availability' feature still exists, although subject to a decade-long policy not to use it; and future generations of GPS satellites may no longer support it.

Hybrid schemes exist that use two or more sources in order to generate more accurate location-estimates, or to generate estimates more quickly. In particular, Assisted GPS (A-GPS) utilises data from terrestrial servers accessed over cellular networks in order to more efficiently process satellite-derived data (e.g. RE 2012).

Further categories of location and tracking technologies emerge from time to time. A current example uses means described by the present authors as 'mobile device signatures' (MDS). A device may monitor the signals emanating from a user's mobile device, without being part of the network that the user's device is communicating with. The eavesdropping device may detect particular signal characteristics that distinguish the user's mobile device from others in the vicinity. In addition, it may apply any of the various techniques mentioned above, in order to locate the device. If the signal characteristics are persistent, the eavesdropping device can track the user's mobile device, and hence the person carrying it. No formal literature on MDS has yet been located. The supplier's brief description is at PI (2010b).

The various technologies described in this section are capable of being applied to many purposes. The focus in this paper is on their application to surveillance.

3. Surveillance

The term surveillance refers to the systematic investigation or monitoring of the actions or communications of one or more persons (Clarke 2009c). Until recent times, surveillance was visual, and depended on physical proximity of an observer to the observed. The volume of surveillance conducted was kept in check by the costs involved. Surveillance aids and enhancements emerged, such as binoculars and, later, directional microphones. During the 19th century, the post was intercepted, and telephones were tapped. During the 20th century, cameras enabled transmission of image, video and sound to remote locations, and recording for future use (e.g. Parenti 2003).

With the surge in stored personal data that accompanied the application of computing to administration in the 1970s and 1980s, dataveillance emerged (Clarke 1988). Monitoring people through their digital personae rather than through physical observation of their behaviour is much more economical, and hence many more people can be subjected to it (Clarke 1994). The dataveillance epidemic made it more important than ever to clearly distinguish between personal surveillance - of an identified person who has previously come to attention - and mass surveillance - of many people, not necessarily previously identified, about some or all of whom suspicion could be generated.

Location data is of a very particular nature, and hence it has become necessary to distinguish location surveillance as a sub-set of the general category of dataveillance. There are several categories of location surveillance with different characteristics (Clarke & Wigan 2011):

  • capture of an individual's location at a point in time. Depending on the context, this may support inferences being drawn about an individual's behaviour, purpose, intention and associates
  • real-time monitoring of a succession of locations and hence of the person's direction of movement. This is far richer data, and supports much more confident inferences being drawn about an individual's behaviour, purpose, intention and associates
  • predictive tracking, by extrapolation from the person's direction of movement, enabling inferences to be drawn about near-future behaviour, purpose, intention and associates
  • retrospective tracking, on the basis of the data trail of the person's movements, enabling reconstruction of a person's behaviour, purpose, intention and associates at previous times

Information arising at different times, and from different forms of surveillance, can be combined, in order to offer a more complete picture of a person's activities, and enable yet more inferences to be drawn, and suspicions generated. This is the primary sense in which the term 'überveillance' is applied: "Überveillance has to do with the fundamental who (ID), where (location), and when (time) questions in an attempt to derive why (motivation), what (result), and even how (method/plan/thought). Überveillance can be a predictive mechanism for a person's expected behaviour, traits, likes, or dislikes; or it can be based on historical fact; or it can be something in between ... Überveillance is more than closed circuit television feeds, or cross-agency databases linked to national identity cards, or biometrics and ePassports used for international travel. Überveillance is the sum total of all these types of surveillance and the deliberate integration of an individual's personal data for the continuous tracking and monitoring of identity and location in real time" (Michael & Michael 2010. See also Michael & Michael 2007, Michael et al. 2008, Michael et al. 2010, Clarke 2010).

A comprehensive model of surveillance includes consideration of geographical scope, and of temporal scope. Such a model assists the analyst in answering key questions about surveillance: of what? for whom? by whom? why? how? where? and when? (Clarke 2009c). Distinctions are also needed based on the extent to which the subject has knowledge of surveillance activities. It may be overt or covert. If covert, it may be merely unnotified, or alternatively express measures may be undertaken in order to obfuscate, and achieve secrecy. A further element is the notion of 'sousveillance', whereby the tools of surveillance are applied, by those who are commonly watched, against those who are commonly the watchers (Mann et al. 2003).

These notions are applied in the following sections in order to establish the extent to which location and tracking of mobile devices is changing the game of surveillance, and to demonstrate that location surveillance is intruding more deeply into personal freedoms than previous forms of surveillance.

4. Applications

This section presents a typology of applications of mobile device location, as a means of narrowing down to the kinds of uses that have particularly serious privacy implications. These are commonly referred to as location-based services (LBS). One category of applications provide information services that are for the benefit of the mobile device's user, such as navigation aids, and search and discovery tools for the locations variously of particular, identified organisations, and of organisations that sell particular goods and services. Users of LBS of these kinds can be reasonably assumed to be aware that they are disclosing their location. Depending on the design, the disclosures may also be limited to specific service-providers and specific purposes, and the transmissions may be secured.

Another, very different category of application is use by law enforcement agencies (LEAs). The US E-911 mandate of 1999 was nominally a public safety measure, to enable people needing emergency assistance to be quickly and efficiently located. In practice, the facility also delivered LEAs means for locating and tracking people of interest, through their mobile devices. Personal surveillance may be justified by reasonable grounds for suspicion that the subject is involved in serious crime, and may be specifically authorised by judicial warrant. Many countries have always been very loose in their control over LEAs, however, and many others have drastically weakened their controls since 2001. Hence, in any given jurisdiction and context, each and all of the controls may be lacking.

Yet worse, LEAs use mobile location and tracking for mass surveillance, without any specific grounds for suspicion about any of the many people caught up in what is essentially a dragnet-fishing operation (e.g. Mery 2009). Examples might include monitoring the area adjacent to a meeting-venue watching out for a blacklist of device-identifiers known to have been associated with activists in the past, or collecting device-identifiers for use on future occasions. In addition to netting the kinds of individuals who are of legitimate interest, the 'by-catch' inevitably includes threatened species. There are already extraordinarily wide-ranging (and to a considerable extent uncontrolled) data retention requirements in many countries.

Of further concern is the use of Automated Number Plate Recognition (ANPR) for mass surveillance purposes. This has been out of control in the UK since 2006, and has been proposed or attempted in various other countries as well (Clarke 2009a). Traffic surveillance is expressly used not only for retrospective analysis of the movements of individuals of interest to LEAs, but also as a means of generating suspicions about other people (Lewis 2008).

Beyond LEAs, many government agencies perform social control functions, and may be tempted to conduct location and tracking surveillance. Examples would include benefits-paying organisations tracking the movements of benefits-recipients about whom suspicions have arisen. It is not too far-fetched to anticipate zealous public servants concerned about fraud control imposing location surveillance on all recipients of some particularly valuable benefit, or as a security precaution on every person visiting a sensitive area (e.g. a prison, a power plant, a national park).

Various forms of social control are also exercised by private sector organisations. Some of these organisations, such as placement services for the unemployed, may be performing outsourced public sector functions. Others, such as workers' compensation providers, may be seeking to control personal insurance claimants, and similarly car-hire companies and insurance providers may wish to monitor motor vehicles' distance driven and roads used (Economist 2012).

A further privacy-invasive practice that is already common is the acquisition of location and tracking data by marketing corporations, as a by-product of the provision of location-based services, but with the data then applied to further purposes other than that for which it was intended. Some uses rely on statistical analysis of large holdings ('data mining'). Many uses are, on the other hand, very specific to the individual, and are for such purposes as direct or indirect targeting of advertisements and the sale of goods and services. Some of these applications combine location data with data from other sources, such as consumer profiling agencies, in order to build up such a substantial digital persona that the individual's behaviour is readily influenced. This takes the activity into the realms of überveillance.

All such services raise serious privacy concerns, because the data is intensive and sensitive, and attractive to organisations. Companies may gain rights in relation to the data through market power, or by trickery - such as exploitation of a self-granted right to change the Terms of Service (Clarke 2011). Once captured, the data may be re-purposed by any organisation that gains access to it, because the value is high enough that they may judge the trivial penalties that generally apply to breaches of privacy laws to be well worth the risk.

A recently-emerged, privacy-invasive practice is the application of the mobile device signature (MDS) form of tracking, in such locations as supermarkets. This is claimed by its providers to offer deep observational insights into the behaviour of customers, including dwell-times in front of displays, possibly linked with the purchaser's behaviour. This raises concerns a little different from other categories of location and tracking technologies, and is accordingly considered in greater depth in the following section.

It is noteworthy that an early review identified a wide range of LBS, which the authors classified into mobile guides, transport, gaming, assistive technology and location-based health (Raper et al. 2007b). Yet that work completely failed to notice that a vast array of applications were emergent in surveillance, law enforcement and national security, despite the existence of relevant literature from at least 1999 onwards (Clarke 2001Michael & Masters 2006).

5. Implications

The previous sections have introduced many examples of risks to citizens and consumers arising from location surveillance. This section presents an analysis of the categories and of the degree of seriousness with which they should be viewed. The first topic addressed is the privacy of personal location data. Other dimensions of privacy are then considered, and then the specific case of MDS is examined. The treatment here is complementary to earlier articles that have looked more generally at particular applications such as location-based mobile advertising, e.g. Cleff (2007, 2010) and King & Jessen (2010). See also Art. 29 (2011).

5.1 Locational Privacy

Knowing where someone has been, knowing what they are doing right now, and being able to predict where they might go next is a powerful tool for social control and for chilling behaviour (Abbas 2011). Humans do not move around in a random manner (Song et al. 2010).

One interpretation of 'locational privacy' is that it "is the ability of an individual to move in public space with the expectation that under normal circumstances their location will not be systematically and secretly recorded for later use" (Blumberg & Eckersley 2009). A more concise definition is "the ability to control the extent to which personal location information is ... [accessible and] used by others" (van Loenen et al. 2009). Hence 'tracking privacy' is the interest an individual has in controlling information about their sequence of locations.

Location surveillance is deeply intrusive into data privacy, because it is very rich, and enables a great many inferences to be drawn (Clarke 2001, Dobson & Fisher 2003, Michael et al. 2006aClarke & Wigan 2011). As demonstrated by Raper et al. (2007a, pp. 32-33), most of the technical literature that considers privacy is merely concerned about it as an impediment to deployment and adoption, and how to overcome the barrier rather than how to solve the problem. Few authors adopt a positive approach to privacy-protective location technologies. The same authors' review of applications (Raper et al. 2007b) includes a single mention of privacy, and that is in relation to just one of the scores of sub-categories of application that they catalogue.

Most service-providers are cavalier in their handling of personal data, and extravagant in their claims. For example, Skyhook claims that it "respects the privacy of all users, customers, employees and partners"; but, significantly, it makes no mention of the privacy of the people whose locations, through the locations of their Wifi routers, it collects and stores (Skyhook 2012).

Consent is critical in such LBS as personal location chronicle systems, people-followers and footpath route-tracker systems that systematically collect personal location information from a device they are carrying (Collier 2011c). The data handled by such applications is highly sensitive because it can be used to conduct behavioural profiling of individuals in particular settings. The sensitivity exists even if the individuals remain 'nameless', i.e. if each identifier is a temporary or pseudo-identifier and is not linked to other records. Service-providers, and any other organisations that gain access to the data, achieve the capacity to make judgements on individuals based on their choices of, for example, which retail stores they walk into and which they do not. For example, if a subscriber visits a particular religious bookstore within a shopping mall on a weekly basis, the assumption can be reasonably made that they are in some way affiliated to that religion (Samuel 2008).

It is frequently asserted that individuals cannot have a reasonable expectation of privacy in a public space. Contrary to those assertions, however, privacy expectations always have existed in public places, and continue to exist (VLRC 2010). Tracking the movements of people as they go about their business is a breach of a fundamental expectation that people will be 'let alone'. In policing, for example, in most democratic countries, it is against the law to covertly track an individual or their vehicle without specific, prior approval in the form of a warrant. This principle has, however, been compromised in many countries since 2001. Warrantless tracking using a mobile device generally results in the evidence, which has been obtained without the proper authority, being inadmissible in a court of law (Samuel 2008). Some law enforcement agencies have argued for the abolition of the warrant process because the bureaucracy involved may mean that the suspect cannot be prosecuted for a crime they have likely committed (Ganz 2005). These issues are not new; but far from eliminating a warrant process, the appropriate response is to invest the energy in streamlining this process (Bronitt 2010).

Privacy risks arise not only from locational data of high integrity, but also from data that is or becomes associated with a person and that is inaccurate, misleading, or wrongly attributed to that individual. High levels of inaccuracy and unreliability were noted above in respect of all forms of location and tracking technologies. In the case of MDS services, claims have been made of one-to-two metre locational accuracy. This has yet to be supported by experimental test cases, however, and hence there is uncertainty about the reliability of inferences that the service-provider or the shop-owner draw. If the data is the subject of a warrant or subpoena, the data's inaccuracy could result in false accusations and even a miscarriage of justice, with the 'wrong person' finding themselves in the 'right place' at the 'right time'.

5.2 Privacy More Broadly

Privacy has multiple dimensions. One analysis, in Clarke (2006a), identifies four distinct aspects. Privacy of Personal Data, variously also 'data privacy' and 'information privacy', is the most widely-discussed dimension of the four. Individuals claim that data about themselves should not be automatically available to other individuals and organisations, and that, even where data is possessed by another party, the individual must be able to exercise a substantial degree of control over that data and its use. The last five decades have seen the application of information technologies to a vast array of abuses of data privacy. The degree of privacy-intrusiveness is a function of both the intensity and the richness of the data. Where multiple sources are combined, the impact is particularly likely to chill behaviour. An example is the correlation of video-feeds with mobile device tracking. The previous sub-section addressed that dimension.

Privacy of the Person, or 'bodily privacy', extends from freedom from torture and right to medical treatment, via compulsory immunisation and imposed treatments, to compulsory provision of samples of body fluids and body tissue, and obligations to submit to biometric measurement. Locational surveillance gives rise to concerns about personal safety. Physical privacy is directly threatened where a person who wishes to inflict harm is able to infer the present or near-future location of their target. Dramatic examples include assassins, kidnappers, 'standover merchants' and extortionists. But even people who are neither celebrities nor notorities are subject to stalking and harassment (Fusco et al. 2012).

Privacy of Personal Communications is concerned with the need of individuals for freedom to communicate among themselves, without routine monitoring of their communications by other persons or organisations. Issues include 'mail covers', the use of directional microphones, 'bugs' and telephonic interception, with or without recording apparatus, and third-party access to email-messages. Locational surveillance thereby creates new threats to communications privacy. For example, the equivalent of 'call records' can be generated by combining the locations of two device-identifiers in order to infer that a face-to-face conversation occurred.

Privacy of Personal Behaviour encompasses 'media privacy', but particular concern arises in relation to sensitive matters such as sexual preferences and habits, political activities and religious practices. Some privacy analyses, particularly in Europe, extend this discussion to personal autonomy, liberty and the right of self-determination (e.g. King & Jesson 2010). The notion of 'private space' is vital to economic and social aspects of behaviour, is relevant in 'private places' such as the home and toilet cubicles, but is also relevant and important in 'public places', where systematic observation and the recording of images and sounds are far more intrusive than casual observation by the few people in the vicinity.

Locational surveillance gives rise to rich sets of data about individuals' activities. The knowledge, or even suspicion, that such surveillance is undertaken, chills their behaviour. The chilling factor is vital in the case of political behaviour (Clarke 2008). It is also of consequence in economic behaviour, because the inventors and innovators on whom new developments depend are commonly 'different-thinkers' and even 'deviants', who are liable to come to come to attention in mass surveillance dragnets, with the tendency to chill their behaviour, their interactions and their creativity.

Surveillance that generates accurate data is one form of threat. Surveillance that generates inaccurate data, or wrongly associates data with a particular person, is dangerous as well. Many inferences that arise from inaccurate data will be wrong, of course, but that won't prevent those inferences being drawn, resulting in unjustified behavioural privacy invasiveness, including unjustified association with people who are, perhaps for perfectly good reasons, themselves under suspicion.

In short, all dimensions of privacy are seriously affected by location surveillance. For deeper treatments of the topic, see Michael et al. (2006b) and Clarke & Wigan (2011).

5.3 Locational Privacy and MDS

The recent innovation of tracking by means of mobile device signatures (MDS) gives rise to some issues additional to, or different from, mainstream device-location technologies. This section accordingly considers this particular technique's implications in greater depth. Limited reliable information is currently available, and the analysis is of necessity based on supplier-published sources (PI 2010a, 2010b) and media reports (Collier 2010a, 2010b, 2010c).

A company called Path Intelligence (PI) markets an MDS service to shopping mall-owners, to enable them to better value their floorspace in terms of rental revenues, and to identify points of on-foot traffic congestion to on-sell physical advertising and marketing floorspace (PI 2010a). The company claims to detect each phone (and hence person) that enters a zone, and to capture data, including:

  • how long each device and person stay, including dwell times in front of shop windows;
  • repeat visits by shoppers in varying frequency durations; and
  • typical route and circuit paths taken by shoppers as they go from shop to shop during a given shopping experience.

For malls, PI is able to denote such things as whether or not shoppers who shop at one establishment will also shop at another in the same mall, and whether or not people will go out of their way to visit a particular retail outlet independent of its location. For retailers, PI says it is able to provide information on conversion rates by department or even product line, and even which areas of the store might require more attention by staff during specific times of the day or week (PI 2012).

PI says that it uses "complex algorithms" to denote the geographic position of a mobile, using strategically located "proprietary equipment" in a campus setting (PI 2010a). The company states that it is conducting "data-driven analysis", but is not collecting, or at least that it is is not disclosing, any personal information such as a name, mobile telephone number or contents of a short message service (SMS). It states that it only ever provides aggregated data at varying zone levels to the shopping mall-owners. This is presumably justified on the basis that, using MDS techniques, direct identifiers are unlikely to be available, and a pseudo-identifier needs to be assigned. There is no explicit definition of what constitutes a zone. It is clear, however, that minimally-aggregated data at the highest geographic resolution is available for purchase, and at a higher price than more highly-aggregated data.

Shoppers have no relationship with the company, and it appears unlikely that they would even be aware that data about them is being collected and used. The only disclosure appears to be that "at each of our installations our equipment is clearly visible and labelled with our logo and website address" (PI 2010a), but this is unlikely to be visible to many people, and in any case would not inform anyone who saw it.

In short, the company is generating revenue by monitoring signals from the mobile devices of people who visit a shopping mall for the purchase of goods and services. The data collection is performed without the knowledge of the person concerned (Renegar et al. 2008). The company is covertly collecting personal data and exploiting it for profit. There is no incentive or value proposition for the individual whose mobile is being tracked. No clear statement is provided about collection, storage, retention, use and disclosure of the data (Arnold 2008). Even if privacy were not a human right, this would demand statutory intervention on the public policy grounds of commercial unfairness. The company asserts that the "our privacy approach has been reviewed by the [US Federal Trade Commission] FTC, which determined that they are comfortable with our practices" (PI 20101a). It makes no claims of such 'approval' anywhere else in the world.

The service could be extended beyond a mall and the individual stores within it, to, for example, associated walkways and parking areas, and surrounding areas such as government offices, entertainment zones and shopping-strips. Applications can also be readily envisaged on hospital and university campuses, and in airports and other transport hubs. From prior research, this is likely to expose the individual's place of employment, and even their residence (Michael et al. 2006). Even if only aggregated data is sold to businesses, the individual records remain available to at least the service-provider.

The scope exists to combine this form of locational surveillance with video-surveillance such as in-store CCTV, and indeed this is claimed to be already a feature of the company's offering to retail stores. To the extent that a commonly-used identifier can be established (e.g. through association with the person's payment or loyalty card at a point-of-sale), the full battery of local and externally-acquired customer transaction histories and consolidated 'public records' data can be linked to in-store behaviour (Michael & Michael 2007). Longstanding visual surveillance is intersecting with well-established data surveillance, and being augmented by locational surveillance, giving breath to dataveillance, or what is now being referred to by some as 'smart surveillance' (Wright et al. 2010, IBM 2011).

Surreptitious collection of personal data is (with exemptions and exceptions) largely against the law, even when undertaken by law enforcement personnel. The MDS mechanism also flies in the face of telephonic interception laws. How, then, can it be in any way acceptable for a form of warrantless tracking to be undertaken by or on behalf of corporations or mainstream government agencies, of shoppers in a mall, or travellers in an airport, or commuters in a transport hub? Why should a service-provider have the right to do what a law enforcement agency cannot normally do?

6. Controls

The tenor of the discussion to date has been that location surveillance harbours enormous threats to location privacy, but also to personal safety, the freedom to communicate, freedom of movement, and freedom of behaviour. This section examines the extent to which protections exist, firstly in the form of natural or intrinsic controls, and secondly in the form of legal provisions. The existing safeguards are found to be seriously inadequate, and it is therefore necessary to also examine the prospects for major enhancements to law, in order to achieve essential protections.

6.1 Intrinsic Controls

A variety of forms of safeguard exist against harmful technologies and unreasonable applications of them. The intrinsic economic control has largely evaporated, partly because the tools use electronics and the components are produced in high volumes at low unit cost. Another reason is that the advertising and marketing sectors are highly sophisticated, already hold and exploit vast quantities of personal data, and are readily geared up to exploit yet more data.

Neither the oxymoronic notion of 'business ethics' nor the personal morality of executives in business and government act as any significant brake on the behaviours of corporations and governments, because they are very weak barriers, and they are readily rationalised away in the face of claims of enhanced efficiencies in, for example, marketing communications, fraud control, criminal justice and control over anti-social behaviour.

A further category of intrinsic control is 'self-regulatory' arrangements within relevant industry sectors. In 2010, for example, the Australian Mobile Telecommunications Association (AMTA) released industry guidelines to promote the privacy of people using LBS on mobile devices (AMTA 2010). The guidelines were as follows:

  1. Every LBS must be provided on an opt-in basis with a specific request from a user for the service
  2. Every LBS must comply with all relevant privacy legislation
  3. Every LBS must be designed to guard against consumers being located without their knowledge
  4. Every LBS must allow consumers to maintain full control
  5. Every LBS must enable customers to control who uses their location information and when that is appropriate, and be able to stop or suspend a service easily should they wish

The second point is a matter for parliaments, privacy oversight agencies and law enforcement agencies, and its inclusion in industry guidelines is for-information-only. The remainder, meanwhile, are at best 'aspirational', and at worst mere window-dressing. Codes of this nature are simply ignored by industry members. They are primarily a means to hold off the imposition of actual regulatory measures. Occasional short-term constraints may arise from flurries of media attention, but the 'responsible' organisations escape by suggesting that bad behaviour was limited to a few 'cowboy' organisations or was a one-time error that won't be repeated.

A case study of the industry self-regulation is provided by the Biometrics Code issued by the misleadingly-named Australian industry-and-users association, the Biometrics 'Institute' (BI 2004). During the period 2009-12, the privacy advocacy organisation, the Australian Privacy Foundation (APF), submitted to the Privacy Commissioner on multiple occasions that the Code failed to meet the stipulated requirements and under the Commissioner's own Rules had to be de-registered. The Code never had more than five subscribers (out of a base of well over 100 members - which was itself only a sub-set of organisations active in the area), and had no signatories among the major biometrics vendors or users, because all five subscribers were small organisations or consultants. In addition, none of the subscribers appear to have ever provided a link to the Code on their websites or in their Privacy Policy Statements (APF 2012).

The Commissioner finally ended the farce in April 2012, citing the "low numbers of subscribers", but avoided its responsibilities by permitting the 'Institute' to "request" revocation, over two years after the APF had made the same request (OAIC 2012). The case represents an object lesson in the vacuousness of self-regulation and the business-friendliness of a captive privacy oversight agency.

If economics, morality and industry-sector politics are inadequate, perhaps competition and organisational self-interest might work. On the other hand, repeated proposals that privacy is a strategic factor for corporations and government agencies have fallen on stony ground (Clarke 19962006b).

The public can endeavour to exercise countervailing power against privacy-invasive practices. On the other hand, individuals acting alone are of little or no consequence to organisations that are intent on the application of location surveillance. Moreover, consumer organisations lack funding, professionalism and reach, and only occasionally attract sufficient media attention to force any meaningful responses from organisations deploying surveillance technologies.

Individuals may have direct surveillance countermeasures available to them, but relatively few people have the combination of motivation, technical competence and persistence to overcome lethargy and the natural human desire to believe that the institutions surrounding them are benign. In addition, some government agencies, corporations and (increasingly prevalent) public-private partnerships seek to deny anonymity, pseudonymity and multiple identities, and to impose so-called 'real name' policies, for example as a solution to the imagined epidemics of cyber-bullying, hate speech and child pornography. Individuals who use cryptography and other obfuscation techniques have to overcome the endeavours of business and government to stigmatise them as criminals with 'something to hide'.

6.2 Legal Controls

It is clear that natural or intrinsic controls have been utter failures in privacy matters generally, and will be in locational privacy matters as well. That leaves legal safeguards for personal freedoms as the sole protection. There are enormous differences among domestic laws relating to location surveillance. This section accordingly limits itself to generalities and examples.

Privacy laws are (with some qualifications, mainly in Europe) very weak instruments. Even where public servants and parliaments have an actual intention to protect privacy, rather than merely to overcome public concerns by passing placebo statutes, the draft Bills are countered by strong lobbying by government agencies and industry, to the extent that measures that were originally portrayed as being privacy-protective reach the statute books as authority for privacy breaches and surveillance (Clarke 2000).

Privacy laws, once passed, are continually eroded by exceptions built into subsequent legislation, and by technological capabilities that were not contemplated when the laws were passed. In most countries, location privacy has yet to be specifically addressed in legislation. Even where it is encompassed by human rights and privacy laws, the coverage is generally imprecise and ambiguous. More direct and specific regulation may exist, however. In Australia, for example, the Telecommunications (Interception and Access) Act and the Surveillance Devices Act define and criminalise inappropriate interception and access, use, communication and publication of location information that is obtained from mobile device traffic (AG 2005). On the other hand, when Google Inc. intercepted wi-fi signals and recorded the data that they contained, the Privacy Commissioner absolved the company (Riley 2010), and the Australian Federal Police refused to prosecute despite the action - whether it was intentional, 'inadvertent' or merely plausibly deniable - being a clear breach of the criminal law (Moses 2010).

The European Union determined a decade ago that location data that is identifiable to individuals is to some extent at least subject to existing data protection laws (EU 2002). However, the wording of that so-called 'e-Privacy Directive' countenances the collection of "location data which are more precise than is necessary for the transmission of communications", without clear controls over the justification, proportionality and transparency of that collection (para. 35). In addition, the e-Privacy Directive only applies to telecommunications service providers, not to other organisations that acquire location and tracking data. King & Jessen (2010) discuss various gaps in the protective regimes in Europe.

The EU's Advisory Body (essentially a Committee of European Data Protection Commissioners) has issued an Opinion that mobile location data is generally capable of being associated with a person, and hence is personal data, and hence is subject to the EU Directive of 1995 and national laws that implement that Directive (Art. 29 2011). Consent is considered to be generally necessary, and that consent must be informed, and sufficiently granular (pp. 13-18).

It is unclear, however, to what extent this Opinion has actually caused, and will in the future cause, organisations that collect, store, use and disclose location data to change their practices. This uncertainty exists in respect of national security, law enforcement and social control agencies, which have, or which can arrange, legal authority that overrides data protection laws. It also applies to non-government organisations of all kinds, which can take advantage of exceptions, exemptions, loopholes, non-obviousness, obfuscation, unenforceability within each particular jurisdiction, and extra-jurisdictionality, to operate in ways that are in apparent breach of the Opinion.

Legal authorities for privacy-invasions are in a great many cases vague rather than precise, and in many jurisdictions power in relation to specific decisions is delegated to an LEA (in such forms as self-written 'warrants'), or even a social control agency (in the form of demand-powers), rather than requiring a decision by a judicial officer based on evidence provided by the applicant.

Citizens in many countries are subject to more or less legitimate surveillance of various degrees and orders of granularity, by their government, in the name of law enforcement and national security. However, many Parliaments have granted powers to national security agencies to use location technology to track citizens and to intercept telecommunications. Moreover, many Parliaments have failed the public by permitting a warrant to be signed by a Minister, or even a public servant, rather than a judicial officer (Jay 1999). Worse still, it appears that these already-gross breaches of the principle of a free society are in effect being extended to the authorisation of a private organisation to track mobiles of ordinary citizens because it may lead to better services planning, or more efficient advertising and marketing (Collier 2011a).

Data protection legislation in all countries evidences massive weaknesses. There are manifold exemptions and exceptions, and there are intentional and accidental exclusions, for example through limitations in the definitions of 'identified' and 'personal data'. Even the much-vaunted European laws fail to cope with extra-territoriality and are largely ignored by US-based service-providers. They are also focussed exclusively on data, leaving large gaps in safeguards for physical, communications and behavioural privacy.

Meanwhile, a vast amount of abuse of personal data is achieved through the freedom of corporations and government agencies to pretend that Terms imposed on consumers and citizens without the scope to reject them are somehow the subject of informed and freely-given consent. For example, petrol-stations, supermarkets and many government agencies pretend that walking past signs saying 'area subject to CCTV' represents consent to gather, transmit, record, store, use and disclose data. The same approach is being adopted in relation to highly-sensitive location data, and much-vaunted data protection laws are simply subverted by the mirage of consent.

At least notices such as 'you are now being watched' or 'smile, you are being recorded' inform customers that they are under observation. On the other hand, people are generally oblivious to the fact that their mobile subscriber identity is transmitted from their mobile phone and multilaterated to yield a reasonably precise location in a shopping mall (Collier 2011a, b, c). Further, there is no meaningful sense in which they can be claimed to have consented to providing location data to a third party, in this case a location service-provider with whom they have never had contact. And the emergent combination of MDS with CCTV sources becomes a pervasive view of the person, an 'über' view, providing a set of über-analytics to - at this stage - shopping complex owners and their constituents.

What rights do employees have if such a system were instituted in an employment setting? Are workplace surveillance laws in place that would protect employees from constant monitoring? A similar problem applies to people at airports, or on hospital, university, industrial or government campuses. No social contract has been entered into between the parties, rendering the subscriber powerless.

Since the collapse of the Technology Assessment movement, technological deployment proceeds unimpeded, and public risks are addressed only after they have emerged and the clamour of concern has risen to a crescendo. A reactive force is at play, rather than proactive measures being taken to ensure avoidance or mitigation of potential privacy breaches. In Australia, for example, safeguards for location surveillance exist at best incidentally, in provisions under separate legislative regimes and in separate jurisdictions, and at worst not at all. No overarching framework exists to provide consistency among the laws. This causes confusion and inevitably results in inadequate protections (ALRC 2008).

6.3 Prospective Legal Controls

Various learned studies have been conducted, but gather dust. In Australia, the three major law reform commissions have all reported, and all have been ignored by the legislatures (NSWLRC 2005ALRC 2008VLRC 2010).

One critical need is for the fundamental principle to be recovered, to the effect that the handling of personal data requires either consent or legal authority. Consent is meaningless as a control over unreasonable behaviour, however, unless it satisfies a number of key conditions. It must be informed, it must be freely-given, and it must be sufficiently granular, not bundled (Clarke 2002). In a great many of the circumstances in which organisations are claiming to have consent to gather, store, use and disclose location data, the consumer does not appreciate what the scope of handling is that the service-provider is authorising themselves to perform; the Terms are imposed by the service-provider and may even be varied or completely re-written without consultation, a period of notice or even any notice at all; and consent is bundled rather than the individual being able to construct a pattern of consents and denials that suit their personal needs. Discussions all too frequently focus on the specifically-US notion of 'opt-out' (or 'presumed consent'), with consent debased to 'opt-in', and deprecated as inefficient and business-unfriendly.

Recently, some very weak proposals have been put forward, primarily in the USA. In 2011, for example, two US Senators proposed a Location Privacy Protection Bill (Cheng 2011). An organisation that collected location data from mobile or wireless data devices would have to state explicitly in their privacy policies what was being collected, in plain English. This would represent only a partial implementation of the already very weak 2006 recommendation of the Internet Engineering Task Force for Geographic Location/Privacy (IETF GEOPRIV) working group, which decided that technical systems should include `Fair Information Practices' (FIPs) to defend against harms associated with the use of location technologies (EPIC 2006). FIPs, however, is itself only a highly cut-down version of effective privacy protections, and the Bill proposes only a small fraction of FIPs. It would be close to worthless to consumers, and close to legislative authorisation for highly privacy-invasive actions by organisations.

Two other US senators tabled a GPS Bill, nominally intended to "balance the needs of Americans' privacy protections with the legitimate needs of law enforcement, and maintains emergency exceptions" (Anderson 2011). The scope is very narrow - next would have to come the Wi-Fi Act, the A-GPS Act, etc. That approach is obviously unviable in the longer term as new innovations emerge. Effective legislation must have appropriate generality rather than excessive technology-specificity, and should be based on semantics not syntax. Yet worse, these Bills would provide legal authorisation for grossly privacy-invasive location and tracking. IETF engineers, and now Congressmen, want to compromise human rights and increase the imbalance of power between business and consumers.

7. Conclusions

Mobile device location technologies and their applications are enabling surveillance, and producing an enormous leap in intrusions into data privacy and into privacy of the person, privacy of personal communications, and privacy of personal behaviour.

Existing privacy laws are entirely incapable of protecting consumers and citizens against the onslaught. Even where consent is claimed, it generally fails the tests of being informed, freely-given and granular.

There is an urgent need for outcries from oversight agencies, and responses from legislatures. Individual countries can provide some degree of protection, but the extra-territorial nature of so much of the private sector, and the use of corporate havens, in particular the USA, mean that multilateral action is essential in order to overcome the excesses arising from the US laissez faire traditions.

One approach to the problem would be location privacy protection legislation, although it would need to embody the complete suite of protections rather than the mere notification that the technology breaches privacy. An alternative approach is amendment of the current privacy legislation and other anti-terrorism legislation in order to create appropriate regulatory provisions, and close the gaps that LBS providers are exploiting (Koppel 2010).

The chimeras of self-regulation, and the unenforceability of guidelines, are not safeguards. Sensitive data like location information must be subject to actual, enforced protections, with guidelines and codes no longer used as a substitute, but merely playing a supporting role. Unless substantial protections for personal location information are enacted and enforced, there will be an epidemic of unjustified, disproportionate and covert surveillance, conducted by government and business, and even by citizens (Gillespie 2009, Abbas et al. 2011).

References

Abbas R. (2011) 'The social and behavioural implications of location-based services: An observational study of users' Journal of Location Based Services, 5, 3-4 (December 2011)

Abbas R., Michael K., Michael m.g. & Aloudat A. (2011) 'Emerging forms of covert surveillance using GPS-enabled devices', Journal of Cases on Information Technology, 13, 2 (2011) 19-33

AG (2005) 'What the Government is doing: Surveillance Device Act 2004', 25 May 2005, Australian Government, at http://www.ag.gov.au/agd/www/nationalsecurity.nsf/AllDocs/9B1F97B59105AEE6CA2570C0014CAF5?OpenDocument

ALRC (2008) 'For your information: Australian privacy law and practice (ALRC Report 108)', Australian Government, 2, pp. 1409-10, http://www.alrc.gov.au/publications/report-108

AMTA (2010) 'New mobile telecommunications industry guidelines and consumer tips set benchmark for Location Based Services', Australian Mobile Telecommunications Association, 2010, athttp://www.amta.org.au/articles/New.mobile.telecommunications.industry.guidelines.and.consumer.tips.set.benchmark.for.Location.Based.Services

Anderson N. (2011) 'Bipartisan bill would end government's warrantless GPS tracking', Ars Technica, June 2011, at http://arstechnica.com/tech-policy/news/2011/06/bipartisan-bill-would-end-governments-warrantless-gps-tracking.ars

APF (2012) 'Revocation of the Biometrics Industry Code' Australian Privacy Foundation, March 2012, at http://www.privacy.org.au/Papers/OAIC-BiomCodeRevoc-120321.pdf

Arnold B. (2008) 'Privacy guide', Caslon Analytics, May 2008, at http://www.caslon.com.au/privacyguide19.htm

Art. 29 (2011) 'Opinion 13/2011 on Geolocation services on smart mobile devices' Article 29 Data Protection Working Party , 881/11/EN WP 185, 16 May 2011, at http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2011/wp185_en.pdf

BI (2004) 'Privacy Code' Biometrics Institute, Sydney, April 2004, at http://web.archive.org/web/20050424120627/http://www.biometricsinstitute.org/displaycommon.cfm?an=1&subarticlenbr=8

Blumberg A.J. & Eckersley P. (2009) 'On locational privacy, and how to avoid losing it forever' Electronic Frontier Foundation, August 2009, at https://www.eff.org/wp/locational-privacy

Bronitt S. (2010) 'Regulating covert policing methods: from reactive to proactive models of admissibility', in S. Bronitt, C. Harfield and K. Michael (eds.), The Social Implications of Covert Policing, 2010, pp. 9-14

Cheng J. (2011) 'Franken's location-privacy bill would close mobile-tracking 'loopholes'', Wired, 17 June 2011, at http://www.wired.com/epicenter/2011/06/franken-location-loopholes/

Chetty K., Smith G.E. & Woodbridge K. (2012) 'Through-the-Wall Sensing of Personnel Using Passive Bistatic WiFi Radar at Standoff Distances' IEEE Transactions on Geoscience and Remote Sensing 50, 4 (Aril 2012) 1218 - 1226

Clarke R. (1988) 'Information technology and dataveillance', Communications of the ACM, 31(5), May 1988, pp498-512, at http://www.rogerclarke.com/DV/CACM88.html

Clarke R. (1994) 'The Digital Persona and its Application to Data Surveillance' The Information Society 10,2 (June 1994) 77-92, at http://www.rogerclarke.com/DV/DigPersona.html

Clarke R. (1996) 'Privacy and Dataveillance, and Organisational Strategy' Proc. I.S. Audit & Control Association (EDPAC'96), Perth, Western Australia, May 1996, athttp://www.rogerclarke.com/DV/PStrat.html

Clarke R. (2000) 'Submission to the Commonwealth Attorney-General re: 'A privacy scheme for the private sector: Release of Key Provisions' of 14 December 1999' Xamax Consultancy Pty Ltd, January 2000, at http://www.anu.edu.au/people/Roger.Clarke/DV/PAPSSub0001.html

Clarke R. (2001) 'Person-Location and Person-Tracking: Technologies, Risks and Policy Implications' Information Technology & People 14, 2 (Summer 2001) 206-231, athttp://www.rogerclarke.com/DV/PLT.html

Clarke R. (2002) 'e-Consent: A Critical Element of Trust in e-Business' Proc. 15th Bled Electronic Commerce Conference, Bled, Slovenia, June 2002, at http://www.rogerclarke.com/EC/eConsent.html

Clarke R. (2006a) 'What's 'Privacy'?' Xamax Consultancy Pty Ltd, August 2006, at http://www.rogerclarke.com/DV/Privacy.html

Clarke R. (2006b) 'Make Privacy a Strategic Factor - The Why and the How' Cutter IT Journal 19, 11 (October 2006), at http://www.rogerclarke.com/DV/APBD-0609.html

Clarke R. (2008) 'Dissidentity: The Political Dimension of Identity and Privacy' Identity in the Information Society 1, 1 (December, 2008) 221-228, at http://www.rogerclarke.com/DV/Dissidentity.html

Clarke R. (2009a) 'The Covert Implementation of Mass Vehicle Surveillance in Australia' Proc 4th Workshop on the Social Implications of National Security: Covert Policing, April 2009, ANU, Canberra, at http://www.rogerclarke.com/DV/ANPR-Surv.html

Clarke R. (2009b) 'A Sufficiently Rich Model of (Id)entity, Authentication and Authorisation' Proc. IDIS 2009 - The 2nd Multidisciplinary Workshop on Identity in the Information Society, LSE, 5 June 2009, at http://www.rogerclarke.com/ID/IdModel-090605.html

Clarke R. (2009c) 'A Framework for Surveillance Analysis' Xamax Consultancy Pty Ltd, August 2009, at http://www.rogerclarke.com/DV/FSA.html

Clarke R. (2010) 'What is Überveillance? (And What Should Be Done About It?)' IEEE Technology and Society 29, 2 (Summer 2010) 17-25, at http://www.rogerclarke.com/DV/RNSA07.html

Clarke R. (2011) 'The Cloudy Future of Consumer Computing' Proc. 24th Bled eConference, June 2011, at http://www.rogerclarke.com/EC/CCC.html

Clarke R. & Wigan M. (2011) 'You are where you've been: The privacy implications of location and tracking technologies' Journal of Location Based Services 5, 3-4 (December 2011) 138-155, PrePrint athttp://www.rogerclarke.com/DV/YAWYB-CWP.html

Cleff E.B. (2007) 'Implementing the legal criteria of meaningful consent in the concept of mobile advertising' Computer Law & Security Review 23,2 (2007) 262-269

Cleff E.B. (2010) 'Effective approaches to regulate mobile advertising: Moving towards a coordinated legal, self-regulatory and technical response' Computer Law & Security Review 26, 2 (2010) 158-169

Collier K. (2011a) 'Stores spy on shoppers', Herald Sun, 12 October 2011, at http://www.heraldsun.com.au/news/more-news/stores-spy-on-shoppers/story-fn7x8me2-1226164244739

Collier K. (2011b) 'Shopping centres' Big Brother plan to track customers', Herald Sun, 14 October 2011, at http://www.heraldsun.com.au/news/more-news/shopping-centres-big-brother-plan-to-track-customers/story-fn7x8me2-1226166191503

Collier K. (2011c) ''Creepy' Path Intelligence retail technology tracks shoppers', news.com.au, 14 October 2011, at http://www.news.com.au/money/creepy-retail-technology-tracks-shoppers/story-e6frfmci-1226166413071

Dahunsi F. & Dwolatzky B. (2012) 'An empirical investigation of the accuracy of location-based services in South Africa' Journal of Location Based Services 6, 1 (March 2012) 22-34

Dobson J. & Fisher P. (2003) 'Geoslavery' IEEE Technology and Society 22 (2003) 47-52, cited in Raper et al. (2007)

Economist (2012) 'Vehicle data recorders - Watching your driving' The Economist' 23 June 2012, at http://www.economist.com/node/21557309

EPIC (2006) 'Privacy and human rights report 2006' Electronic Privacy Information Center, WorldLII, 2006, at http://www.worldlii.org/int/journals/EPICPrivHR/2006/PHR2006-Location.html

EPIC (2012) 'Investigations of Google Street View' Electronic Privacy Information Center, 2012, at http://epic.org/privacy/streetview/

EU (2002) 'Directive 2002/58/EC of the European Parliament and of the Council of 12 July 2002 concerning the processing of personal data and the protection of privacy in the electronic communications sector (Directive on privacy and electronic communications)' Official Journal L 201 , 31/07/2002 P. 0037 - 0047, European Commission, at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:en:HTML

Figueiras J. & Frattasi S. (2010) 'Mobile Positioning and Tracking: From Conventional to Cooperative Techniques' Wiley, 2010

Fusco S.J., Abbas R., Michael K. & Aloudat A. (2012) 'Location-Based Social Networking and its Impact on Trust in Relationships' IEEE Technology and Society Magazine 31,2 (Summer 2012) 39-50, athttp://works.bepress.com/cgi/viewcontent.cgi?article=1326&context=kmichael

Gallagher T. et al. (2009) 'Trials of commercial Wi-Fi positioning systems for indoor and urban canyons' Proc. IGNSS Symposium, 1-3 December 2009, Queensland, cited in Zandbergen (2012)

Ganz J.S. (2005) 'It's already public: why federal officers should not need warrants to use GPS vehicle tracking devices', Journal of Criminal Law and Criminology 95, 4 (Summer 2005) 1325-37

Gillespie A.A. (2009) 'Covert surveillance, human rights and the law', Irish Criminal Law Journal, 19, 3 (August 2009) 71-79

IBM (2011) 'IBM Smart Surveillance System (Previous PeopleVision Project)', IBM Research, 30 October 2011, at http://www.research.ibm.com/peoplevision/

Jay D.M. (1999) 'Use of covert surveillance obtained by search warrant', Australian Law Journal, 73, 1 (Jan 1999) 34-36

King N.J. & Jessen P.W. (2010) 'Profiling the mobile customer - Privacy concerns when behavioural advertisers target mobile phones' Computer Law & Security Review 26, 5 (2010) 455-478 and 26, 6 (2010) 595-612

Koppel A. (2010) 'Warranting a warrant: Fourth Amendment concerns raised by law enforcement's warrantless use of GPS and cellular phone tracking', University of Miami Law Review 64, 3 (April 2010) 1061-1089

Lewis P. (2008) 'Fears over privacy as police expand surveillance project' The Guardian, 15 September 2008, at http://www.guardian.co.uk/uk/2008/sep/15/civilliberties.police

McGuire M., Plataniotis K.N. & Venetsanopoulos A.N. (2005) 'Data fusion of power and time measurements for mobile terminal location' IEEE Transaction on Mobile Computing 4 (2005) 142-153, cited in Raper et al. (2007)

Mann S., Nolan J. & Wellman B. (2003) 'Sousveillance: Inventing and Using Wearable Computing Devices for Data Collection in Surveillance Environments' Surveillance & Society 1, 3 (June 2003) 331-355, at http://www.surveillance-and-society.org/articles1(3)/sousveillance.pdf

Mautz R. (2011) 'Overview of Indoor Positioning Technologies' Keynote, Proc. IPIN'2011, Guimaraes, September 2011, at http://www.geometh.ethz.ch/people/.../IPIN_Keynote_Mautz_2011.pdf

Mery D. (2009) 'The mobile phone as self-inflicted surveillance - And if you don't have one, what have you got to hide?' The Register, 10 April 2009, athttp://www.theregister.co.uk/2009/04/10/mobile_phone_tracking/

Michael K. & Michael M.G. (2007) 'From Dataveillance to Überveillance and the Realpolitik of the Transparent Society' University of Wollongong, 2007, at http://works.bepress.com/kmichael/51

Michael K. & Michael M.G. (2009) 'Innovative Automatic Identification and Location-Based Services: From Bar Codes to Chip Implants' IGI Global, 2009

Michael M.G. & Michael K. (2010) 'Towards a state of uberveillance' IEEE Technology and Society Magazine 29, 2 (Summer 2010) 9-16, at http://works.bepress.com/kmichael/187

Michael K., McNamee A., Michael M.G. & Tootell H. (2006a) 'Location-Based Intelligence - Modeling Behavior in Humans using GPS' Proc. Int'l Symposium on Technology and Society, New York, 8-11 June 2006, at http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1384&context=infopapers

Michael K., McNamee A. & Michael M.G. (2006b) 'The Emerging Ethics of Humancentric GPS Tracking and Monitoring' Proc. Int'l Conf. on Mobile Business, Copenhagen, Denmark IEEE Computer Society, 2006, at http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1384&context=infopapers

Michael M.G., Fusco S.J. & Michael K (2008) 'A Research Note on Ethics in the Emerging Age of Uberveillance (Überveillance)' Computer Communications, 31(6), 2008, 1192-119, athttp://works.bepress.com/kmichael/32/

Michael K. & Masters A. (2006) 'Realized Applications of Positioning Technologies in Defense Intelligence' in Hussein Abbass H. & Essam D. (eds.) 'Applications of Information Systems to Homeland Security and Defense' Idea Group Publishing, 2006, at http://works.bepress.com/kmichael/2

Michael K., Roussos G., Huang G.Q., Gadh R., Chattopadhyay A., Prabhu S. & Chu P. (2010) 'Planetary-scale RFID services in an age of uberveillance' Proceedings of the IEEE 98, 9 (2010) 1663-1671

Moses A. (2010) 'Google escapes criminal charges for Wi-Fi snooping', The Sydney Morning Herald, 6 December 2010, at http://www.smh.com.au/technology/security/google-escapes-criminal-charges-for-wifi-snooping-20101206-18lot.html

NSWLRC (2005) 'Surveillance' Report 108 , NSW Law Reform Commission, 2005, at http://www.lawlink.nsw.gov.au/lawlink/lrc/ll_lrc.nsf/pages/LRC_r108toc

OAIC (2012) '' Office of the Australian Information Commissioner, April 2012, at http://www.comlaw.gov.au/Details/F2012L00869/Explanatory%20Statement/Text

Otterberg A.A. (2005) 'Note: GPS tracking technology: The case for revisiting Knotts and shifting the Supreme Court's theory of the public space under the Fourth Amendment', Boston College Law Review 46 (2005) 661-704

Parenti C. (2003) 'The Soft Cage: Surveillance in America From Slavery to the War on Terror'  Basic Books, 2003

PI (2010a) 'Our Commitment to Privacy', Path Intelligence, 2010, heading changed in late 2012 to 'Privacy by design', at http://www.pathintelligence.com/en/products/footpath/privacy

PI (2010b) 'FootPath Technology', Path Intelligance, 2010, at http://www.pathintelligence.com/en/products/footpath/footpath-technology

PI (2012) 'Retail' Path Intelligence, 2012, at http://www.pathintelligence.com/en/industries/retail

Raper J., Gartner G., Karimi H. & Rizos C. (2007a) 'A critical evaluation of location based services and their potential' Journal of Location Based Services 1, 1 (March 2007) 5-45

Raper J., Gartner G., Karimi H. & Rizos C. (2007b) 'Applications of location-based services: a selected review' Journal of Location Based Services 1, 2 (June 2007) 89-111

RE (2010a) 'IEEE 802.11 standards tutorial' Radio-Electronics.com, apparently of 2010, at http://www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11-standards-tutorial.php

RE (2010b) 'WiMAX IEEE 802.16 technology tutorial' Radio-Electronics.com, apparently of 2010, at http://www.radio-electronics.com/info/wireless/wimax/wimax.php

RE (2012) 'Assisted GPS, A-GPS' Radio-Electronics.com, apparently of 2012, at http://www.radio-electronics.com/info/cellulartelecomms/location_services/assisted_gps.php

Renegar B.D., Michael K. & Michael M.G. (2008) 'Privacy, value and control issues in four mobile business applications' Proc. 7th Int'l Conf. on Mobile Business, 2008, pp. 30-40

Riley J. (2010) 'Gov't 'travesty' in Google privacy case', ITWire, Wednesday 3 November 2010, 20:44, at http://www.itwire.com/it-policy-news/regulation/42898-govt-travesty-in-google-privacy-case

Samuel I.J. (2008) 'Warrantless location tracking', New York University Law Review, 83 (2008) 1324-1352

SHW (2012) 'Skyhook Location Performance', at http://www.skyhookwireless.com/location-technology/performance.php

Skyhook (2012) Website Entries, including 'Frequently Asked Questions' at http://www.skyhookwireless.com/whoweare/faq.php, 'Privacy Policy' athttp://www.skyhookwireless.com/whoweare/privacypolicy.php and 'Location Privacy' at http://www.skyhookwireless.com/whoweare/privacy.php,

Song C., Qu Z., Blumm N. & Barabási A.-L. (2010) 'Limits of predictability in human mobility' Science 327, 5968 (2010) 1018-1021

USGov (2012) 'GPS Accuracy' National Coordination Office for Space-Based Positioning, Navigation, and Timing, February 2012, at http://www.gps.gov/systems/gps/performance/accuracy/

van Loenen B., Zevenbergen J. & de Jong J. (2009) 'Balancing Location Privacy with National Security: A Comparative Analysis of Three Countries through the Balancing Framework of the European Court Of Human Rights' Ch. 2 of Patten N.J. et al. 'National Security: Institutional Approaches', Nova Science Publishers, 2009

VLRC (2010) 'Surveillance in Public Spaces' Victorian Law Reform Commission, Final Report 18, March 2010, athttp://www.lawreform.vic.gov.au/wps/wcm/connect/justlib/Law+Reform/resources/3/6/36418680438a4b4eacc0fd34222e6833/Surveillance_final_report.pdf

Wright D., Friedewald M., Gutwirth S., Langheinrich M., Mordini E., Bellanova R., De Hert P., Wadhwa K. & Bigo D. (2010) 'Sorting out smart surveillance' Computer Law & Security Review 26, 4 (2010) 343-354

Zandbergen P.A. (2012) 'Comparison of WiFi positioning on two mobile devices' Journal of Location Based Services 6, 1 (March 2012) 35-50

Acknowledgements

A preliminary version of the analysis presented in this paper appeared in the November 2011 edition of Precedent, the journal of the Lawyers Alliance. The article has been significantly upgraded as a result of comments provided by the referees and editor.

Author Affiliations

Katina Michael is an Associate Professor in the School of Information Systems and Technology at the University of Wollongong. She is the editor in chief of the IEEE Technology and Society Magazine, is on the editorial board of Computers & Security, and is a co-editor of 'Social Implications of Covert Policing' (2010). She is a Board member of the Australian Privacy Foundation and a representative of the Consumer Federation of Australia.

Roger Clarke is Principal of Xamax Consultancy Pty Ltd, Canberra. He is also a Visiting Professor in the Cyberspace Law & Policy Centre at the University of N.S.W., and a Visiting Professor in theResearch School of Computer Science at the Australian National University. He is currently Chair of the Australian Privacy Foundation, and an Advisory Board member of Privacy International.

Heaven and Hell: Visions for Pervasive Adaptation

Abstract

With everyday objects becoming increasingly smart and the “info-sphere” being enriched with nano-sensors and networked to computationally-enabled devices and services, the way we interact with our environment has changed significantly, and will continue to change rapidly in the next few years. Being user-centric, novel systems will tune their behaviour to individuals, taking into account users’ personal characteristics and preferences. But having a pervasive adaptive environment that understands and supports us “behaving naturally” with all its tempting charm and usability, may also bring latent risks, as we seamlessly give up our privacy (and also personal control) to a pervasive world of business-oriented goals of which we simply may be unaware.

1. Visions of pervasive adaptive technologies

This session considered some implications for the future, inviting participants to evaluate alternative utopian/dystopian visions of pervasive adaptive technologies. It was designed to appeal to anyone interested in the personal, social, economic and political impacts of pervasive, ubiquitous and adaptive computing.

The session was sponsored by projects from the FET Proactive Initiative on Pervasive Adaptation (PerAda), which targets technologies and design methodologies for pervasive information and communication systems capable of autonomously adapting in dynamic environments. The session was based on themes from the PerAda book entitled “This Pervasive Day”, to be published in 2011 by Imperial College Press, which includes several authors from the PerAda projects, who are technology experts in artificial intelligence, adaptive systems, ambient environments, and pervasive computing. The book offers visions of “user heaven” and “user hell”, describing technological benefits and useful applications of pervasive adaptation, but also potential threats of technology. For example, positive advances in sensor networks, affective computing and the ability to improve user-behaviour modeling using predictive analytics could be offset by results that ensure that neither our behaviour, nor our preferences, nor even our feelings will be exempt from being sensed, digitised, stored, shared, and even sold. Other potentially undesirable outcomes to privacy, basic freedoms (of expression, representation, demonstration etc.), and even human rights could emerge.

One of the major challenges, therefore, is how to improve pervasive technology (still in its immature phase) in order to optimise benefits and reduce the risks of negative effects. Increasingly FET research projects are asked to focus on the social and economic impacts of science and technology, and this session aimed to engage scientists in wider issues, and consider some of the less attractive effects as well as the benefits from pervasive adaptation. Future and emerging technology research should focus on the social and economic impacts of practical applications. The prospect of intelligent services increasingly usurping user preferences as well as a certain measure of human control creates challenges across a wide range of fields.

2. Format

The networking session took the form of a live debate, primed by several short “starter” talks by “This Pervasive Day” authors who each outlined “heaven and hell” scenarios. The session was chaired by Ben Paechter, Edinburgh Napier University, and coordinator of the PerAda coordination action. The other speakers were as follows:

Pervasive Adaptation and Design Contractualism.

Jeremy Pitt, Imperial College London, UK, editor of “This Pervasive Day”.

This presentation described some of the new channels, applications and affordances for pervasive computing and stressed the need to revisit the user-centric viewpoint of the domain of Human-Computer Interaction. In dealing with the issues of security and trust in such complex systems, capable of widespread data gathering and storage, Pitt suggested that there is a requirement for Design Contractualism, where the designer makes moral and ethical judgments and encodes them in the system. No privacy or security model is of any value if the system developers will not respect the implicit social contract on which the model depends.

Micro-chipping People, The Risk vs Reward Debate

Katina Michael, University of Wollongong, Australia

Michael discussed the rise of RFID chip implantation in people as a surveillance mechanism, making comparisons with the CCTV cameras that are becoming commonplace in streets and buildings worldwide. These devices are heralding in an age of “Uberveillance”, she claims, with corporations, governments and individuals being increasingly tempted to read and record the biometric and locative data of other individuals. This constant tracking of location and monitoring of physical condition raises serious questions concerning security and privacy that researchers will have to face in the near future.

Who is more adaptive: the technology or ourselves?

Nikola Serbedzija, Fraunhofer FIRST, Germany

Serbedzija discussed how today's widespread information technologies may be affecting how we are as humans. We are now entering a world where information is replacing materiality, and where control over our individual data allows us to construct ourselves as we wish to be seen by others. Serbedzija then presented examples of research into ethically critical systems, including a reflective approach to designing empathetic systems that use our personal, physical data to assist us in our activities, for example as vehicle co-driving situations.

3. Conclusion

Following the presentations, the discussion was opened out and panellists answered questions from conference delegates. This was augmented by the use of a “tweet wall” which was open to delegates to send comments and opinions using a Twitter account. This was displayed on screen during the discussion session.

Keywords: Pervasive adaptation, ubiquitous computing, sensor networks, affective computing, privacy, security

Citation: Ben Paechter, Jeremy Pitt, Nikola Serbedzija, Katina Michael, Jennifer Willies, Ingi Helgasona, 2011, "Heaven and Hell: Visions for Pervasive Adaptation", Procedia Computer Science: The European Future Technologies Conference and Exhibition 2011, Vol. 7, pp. 81-82, DOI: https://doi.org/10.1016/j.procs.2011.12.025

Toward a State of Überveillance

Introduction

Überveillance is an emerging concept, and neither its application nor its power have yet fully arrived [38]. For some time, Roger Clarke's [12, p. 498] 1988 dataveillance concept has been prevalent: the “systematic use of personal data systems in the investigation or monitoring of the actions of one or more persons.”

Almost twenty years on, technology has developed so much and the national security context has altered so greatly [52], that there is a pressing need to formulate a new term to convey both the present reality, and the Realpolitik (policy primarily based on power) of our times. However, if it had not been for dataveillance, überveillance could not be. It must be emphasized that dataveillance will always exist - it will provide the scorecard for the engine being used to fulfill überveillance.

Dataveillance to Überveillance

Überveillance takes that which was static or discrete in the dataveillance world, and makes it constant and embedded. Consider überveillance not only automatic and having to do with identification, but also about real-time location tracking and condition monitoring. That is, überveillance connotes the ability to automatically locate and identify - in essence the ability to perform automatic location identification (ALI). Überveillance has to do with the fundamental who (ID), where (location), and when (time) questions in an attempt to derive why (motivation), what (result), and even how (method/plan/thought). Überveillance can be a predictive mechanism for a person's expected behavior, traits, likes, or dislikes; or it can be based on historical fact; or it can be something in between. The inherent problem with überveillance is that facts do not always add up to truth (i.e., as in the case of an exclusive disjunction T + T = F), and predictions based on überveillance are not always correct.

Überveillance is more than closed circuit television feeds, or cross-agency databases linked to national identity cards, or biometrics and ePassports used for international travel. Überveillance is the sum total of all these types of surveillance and the deliberate integration of an individual's personal data for the continuous tracking and monitoring of identity and location in real time. In its ultimate form, überveillance has to do with more than automatic identification technologies that we carry with us. It has to do with under-the-skin technology that is embedded in the body, such as microchip implants; it is that which cuts into the flesh - a charagma (mark) [61]. Think of it as Big Brother on the inside looking out. This charagma is virtually meaningless without the hybrid network architecture that supports its functionality: making the person a walking online node i.e., beyond luggable netbooks, smart phones, and contactless cards. We are referring here to the lowest common denominator, the smallest unit of tracking - presently a tiny chip inside the body of a human being, which could one day work similarly to the black box.

Implants cannot be left behind, cannot be lost, and supposedly cannot be tampered with; they are always on, can link to objects, and make the person seemingly otherworldly. This act of “chipification” is best illustrated by the ever-increasing uses of implant devices for medical prosthesis and for diagnostics [54]. Humancentric implants are giving rise to the Electrophorus [36, p. 313], the bearer of electric technology; an individual entity very different from the sci-fi notion of Cyborg as portrayed in such popular television series as the Six Million Dollar Man (1974–1978). In its current state, the Electrophorus relies on a device being triggered wirelessly when it enters an electromagnetic field; these properties now mean that systems can interact with people within a spatial dimension, unobtrusively [62]. And it is surely not simple coincidence that alongside überveillance we are witnessing the philosophical reawakening (throughout most of the fundamental streams running through our culture) of Nietzsche's Übermensch - the overcoming of the “all-too-human” [25].

Legal and Ethical Issues

In 2005 the European Group on Ethics (EGE) in Science and New Technologies, established by the European Commission (EC), submitted an Opinion on ICT implants in the human body [45]. The thirty-four page document outlines legal and ethical issues having to do with ICT implants, and is based on the European Union Treaty (Article 6) which has to do with the “fundamental rights” of the individual. Fundamental rights have to do with human dignity, the right to the integrity of the person, and the protection of personal data. From the legal perspective the following was ascertained [45, pp. 20–21]:

  • the existence of a recognised serious but uncertain risk, currently applying to the simplest types of ICT implants in the human body, requires application of the precautionary principle. In particular, one should distinguish between active and passive implants, reversible and irreversible implants, and between offline and online implants;
  • the purpose specification principle mandates at least a distinction between medical and non-medical applications. However, medical applications should also be evaluated stringently, partly to prevent them from being invoked as a means to legitimize other types of application;
  • the data minimization principle rules out the lawfulness of ICT implants that are only aimed at identifying patients, if they can be replaced by less invasive and equally secure tools;
  • the proportionality principle rules out the lawfulness of implants such as those that are used, for instance, exclusively to facilitate entrance to public premises;
  • the principle of integrity and inviolability of the body rules out that the data subject's consent is sufficient to allow all kinds of implant to be deployed; and
  • the dignity principle prohibits transformation of the body into an object that can be manipulated and controlled remotely - into a mere source of information.

ICT implants for non-medical purposes violate fundamental legal principles. ICT implants also have numerous ethical issues, including the requirement for: non-instrumentalization, privacy, non-discrimination, informed consent, equity, and the precautionary principle (see also [8], [27], [29]). It should be stated, however, that the EGE, while not recommending ICT implants for non-medical applications because they are fundamentally fraught with legal and ethical issues, did state the following [45, p. 32]:

ICT implants for surveillance in particular threaten human dignity. They could be used by state authorities, individuals and groups to increase their power over others. The implants could be used to locate people (and also to retrieve other kinds of information about them). This might be justified for security reasons (early release for prisoners) or for safety reasons (location of vulnerable children).

However, the EGE insists that such surveillance applications of ICT implants may only be permitted if the legislator considers that there is an urgent and justified necessity in a democratic society (Article 8 of the Human Rights Convention) and there are no less intrusive methods. Nevertheless the EGE does not favor such uses and considers that surveillance applications, under all circumstances, must be specified in legislation. Surveillance procedures in individual cases should be approved and monitored by an independent court.

The same general principles should apply to the use of ICT implants for military purposes. Although this Opinion was certainly useful, we have growing concerns about the development of the information society, the lack of public debate and awareness regarding this emerging technology, and the pressing need for regulation that has not occurred commensurate to developments in this domain.

Herein rests the problem of human rights and striking a “balance” between freedom, security, and justice. First, we contend that it is a fallacy to speak of a balance. In the microchip implant scenario, there will never be a balance, so long as someone else has the potential to control the implant device or the stored data about us that is linked to the device. Second, we are living in a period where chip implants for the purposes of segregation are being discussed seriously by health officials and politicians. We are speaking here of the identification of groups of people in the name of “health management” or “national security.” We will almost certainly witness new, and more fixed forms, of “electronic apartheid.”

Consider the very real case where the “Papua Legislative Council was deliberating a regulation that would see microchips implanted in people living with HIV/AIDS so authorities could monitor their actions” [50]. Similar discussions on “registration” were held regarding asylum seekers and illegal immigrants in the European Union [18]. RFID implants or the “tagging” of populations in Asia (e.g., Singapore) were also considered “the next step” in the containment and eradication of the Severe Acute Respiratory Syndrome (SARS) in 2003 [43]. Apart from disease outbreaks, RFID has also been discussed as a response and recovery device for emergency services personnel dispatched to terrorist disasters [6], and for the identification of victims of natural disasters, such as in the case of the Boxing Day Tsunami [10]. The question remains whether there is a truly legitimate use function of chip implants for the purposes of emergency management as opposed to other applications. Definition plays a critical role in this instance. A similar debate has ensued in the use of the Schengen Information System II in the European Union where differing states have recorded alerts on individuals based on their understanding of a security risk [17].

In June of 2006, legislative analyst Anthony Gad, reported in brief 06-13 for the Legislative Reference Bureau [16], that the:

2005 Wisconsin Act 482, passed by the legislature and signed by Governor Jim Doyle on May 30, 2006, prohibits the required implanting of microchips in humans. It is the first law of its kind in the nation reflecting a proactive attempt to prevent potential abuses of this emergent technology.

A number of states in the United States have passed similar laws [63], despite the fact that at the national level, the U.S. Food and Drug Administration [15] has allowed radio frequency identification implants for medical use in humans. The Wisconsin Act [59] states:

The people of the state of Wisconsin, represented in senate and assembly, do enact as follows: SECTION 1. 146.25 of the statutes is created to read: 146.25 Required implanting of microchip prohibited. (1) No person may require an individual to undergo the implanting of a microchip. (2) Any person who violates sub. (1) may be required to forfeit not more than $10,000. Each day of continued violation constitutes a separate offense.

North Dakota followed Wisconsin's example. Wisconsin Governor Hoeven signed a two sentence bill into state law on April 4, 2007. The bill was criticized by some who said that while it protected citizens from being “injected” with an implant, it did not prevent someone from making them swallow it [51]. And indeed, there are now a number of swallowable capsule technologies for a variety of purposes that have been patented in the U.S. and worldwide. As with a number of other states, California Governor Arnold Schwarzenegger signed bill SB 362 proposed by state Senator Joe Simitian barring “employers and others from forcing people to have a radio frequency identification (RFID) device implanted under their skin” [28], [60]. According to the Californian Office of Privacy Protection [9] this bill

… would prohibit a person from requiring any other individual to undergo the subcutaneous implanting of an identification device. It would allow an aggrieved party to bring an action against a violator for injunctive relief or for the assessment of civil penalties to be determined by the court.

The bill, which went into effect January 1, 2008, did not receive support from the technology industry on the contention that it was “unnecessary.”

Interestingly, however, it is in the United States that most chip implant applications have occurred, despite the calls for caution. The first human-implantable passive RFID microchip (the VeriChipTM) was approved for medical use in October of 2004 by the U.S. Food and Drug Administration. Nine hundred hospitals across the United States have registered the VeriChip's VeriMed system, and now the corporation's focus has moved to “patient enrollment” including people with diabetes, Alzheimer's, and dementia [14]. The VeriMedTM Patient Identification System is used for “rapidly and accurately identifying people who arrive in an emergency room and are unable to communicate” [56].

In February of 2006 [55], CityWatcher.com reported two of its employees had “glass encapsulated microchips with miniature antennas embedded in their forearms … merely a way of restricting access to vaults that held sensitive data and images for police departments, a layer of security beyond key cards and clearance codes.” Implants may soon be applied to the corrective services sector [44]. In 2002, 27 of 50 American states were using some form of satellite surveillance to monitor parolees. Similar schemes have been used in Sweden since 1994. In the majority of cases, parolees wear wireless wrist or ankle bracelets and carry small boxes containing the vital tracking and positioning technology. The positioning transmitter emits a constant signal that is monitored at a central location [33]. Despite continued claims by researchers that RFID is only used for identification purposes, Health Data Management disclosed that VeriChip (the primary commercial RFID implant patient ID provider) had enhanced its patient wander application by adding the ability to follow the “real-time location of patients, the ability to define containment areas for different classes of patients, and one-touch alerting. The system now also features the ability to track equipment in addition to patients” [19]. A number of these issues have moved the American Medical Association to produce an ethics code for RFID chip implants [4], [41], [47].

Outside the U.S., we find several applications for human-centric RFID. VeriChip's Scott Silverman stated in 2004 that 7000 chip implants had been given to distributors [57]. Today the number of VeriChip implantees worldwide is estimated to be at about 2000. So where did all these chips go? As far back as 2004, a nightclub in Barcelona, Spain [11] and Rotterdam, The Netherlands, known as the Baja Beach Club was offering “its VIP clients the opportunity to have a syringeinjected microchip implanted in their upper arms that not only [gave] them special access to VIP lounges, but also [acted] as a debit account from which they [could] pay for drinks” [39]. Microchips have also been implanted in a number of Mexican officials in the law enforcement sector [57]. “Mexico's top federal prosecutors and investigators began receiving chip implants in their arms … in order to get access to restricted areas inside the attorney general's headquarters.” In this instance, the implant acted as an access control security device despite the documented evidence that RFID is not a secure technology (see Gartner Research report [42]).

Despite the obvious issues related to security, there are a few unsolicited studies that forecast that VeriChip (now under the new corporate name Positive ID) will sell between 1 million and 1.4 million chips by 2020 [64, p. 21]. While these forecasts may seem over inflated to some researchers, one need only consider the very real possibility that some Americans may opt-in to adopting a Class II device that is implantable, life-supporting, or life-sustaining for more affordable and better quality health care (see section C of the Health Care bill titled: National Medical Device Registry [65, pp. 1001–1012]. There is also the real possibility that future pandemic outbreaks even more threatening than the H1N1 influenza, may require all citizens to become implanted for early detection depending on their travel patterns [66].

In the United Kingdom, The Guardian [58], reported that 11-year old Danielle Duval had an active chip (i.e., containing a rechargeable battery) implanted in her. Her mother believes that it is no different from tracking a stolen car, albeit for more important application. Mrs. Duvall is considering implanting her younger daughter age 7 as well but will wait until the child is a bit older, “so that she fully understands what's happening.” In Tokyo the Kyowa Corporation in 2004 manufactured a schoolbag with a GPS device fitted into it, to meet parental concerns about crime, and in 2005 Yokohama City children were involved in a four month RFID bracelet trial using the I-Safety system [53]. In 2007, Trutex, a company in Lancashire England, was seriously considering fitting the school uniforms they manufacture with RFID [31]. What might be next? Will concerned parents force microchip implants on minors?

Recently, decade-old experimental studies on microchip implants in rats have come to light tying the device to tumors [29]. The American Veterinary Medical Association [3] was so concerned that they released the following statement:

The American Veterinary Medical Association (AVMA) is very concerned about recent reports and studies that have linked microchip identification implants, commonly used in dogs and cats, to cancer in dogs and laboratory animals…. In addition, removal of the chip is a more invasive procedure and not without potential complications. It's clear that there is a need for more scientific research into this technology. [emphasis added]

We see here evidence pointing to the notion of “no return” - an admittance that removal of the chip is not easy, and not without complications.

The Norplant System was a levonorgestrel contraceptive insert that over 1 million women in the United States, and over 3.6 million women worldwide had been implanted with through 1996 [2]. The implants were inserted just under the skin of the upper arm in a surgical procedure under local anesthesia and could be removed in a similar fashion. As of 1997, there were 2700 Norplant suits pending in the state and federal courts across the United States alone. Most of the claims had to do with “pain or damage associated with insertion or removal of the implants … [p]laintiffs have contended that they were not adequately warned, however, concerning the degree or severity of these events” [2]. Thus, concerns for the potential for widespread health implications caused by humancentric implants have also been around for some time. In 2003, Covacio provided evidence why implants may impact humans adversely, categorizing these into thermal (i.e., whole/partial rise in body heating), stimulation (i.e., excitation of nerves and muscles), and other effects, most of which are currently unknown [13].

Role of Emerging Technologies

Wireless networks are now commonplace. What is not yet common are formal service level agreements to hand-off transactions between different types of networks. These architectures and protocols are being developed, and it is only a matter of time before existing technologies have the capability to track individuals between indoor and outdoor locations seamlessly, or a new technology is created to do what present-day networks cannot [26]. For instance, a wristwatch device with GPS capabilities to be worn under the skin translucently is one idea that was proposed in 1998. Hengartner and Steenkiste [23] forewarn that “[l]ocation is a sensitive piece of information” and that “releasing it to random entities might pose security and privacy risks.”

There is nowhere to hide in this digital society, and nothing remains private (in due course, perhaps, not even our thoughts). Nanotechnology, the engineering of functional systems at the molecular level, is also set to change the way we perceive surveillance - microscopic bugs (some 50 000 times smaller than the width of the human hair) will be more parasitic than even the most advanced silicon-based auto-ID technologies. In the future we may be wearing hundreds of microscopic implants, each relating to an exomuscle or an exoskeleton, and which have the power to interact with literally millions of objects in the “outside world.” The question is not whether state governments will invest in this technology: they are already making these investments [40]. There is a question whether the next generation will view this technology as super “cool” and convenient and opt-in without comprehending the consequences of their compliance.

The social implications of these über-intrusive technologies will obey few limits and no political borders. They will affect our day-to-day existence and our family and community relations. They will give rise to mental health problems, even more complex forms of paranoia and obsessive compulsive disorder. Many scholars now agree that with the support of modern neuroscience, “the intimate relation between bodily and psychic functions is basic to our personal identity” [45, p. 3]. Religious observances will be affected; for example, in the practice of confession and a particular understanding of absolution from “sin” - people might confess as much as they might want, but the records on the database, the slate, will not be wiped clean. The list of social implications is limited only by our imaginations. The peeping Tom that we carry on the inside will have manifest consequences for that which philosophers and theologians normally term self-consciousness.

Paradoxical Levels of Überveillance

In all of these factors rests the multiple paradoxical levels of überveillance. In the first instance, it will be one of the great blunders of the new political order to think that chip implants (or indeed nanodevices) will provide the last inch of detail required to know where a person is, what they are doing, and what they are thinking. Authentic ambient context will always be lacking, and this could further aggravate potential “puppeteers” of any comprehensive surveillance system. Marcus Wigan captures this critical facet of context when he speaks of “asymmetric information held by third parties.” Second, chip implants will not necessarily make a person smarter or more aware (unless someone can afford chip implants that have that effect), but on the contrary and under the “right” circumstances may make us increasingly unaware and mute. Third, chip implants are not the panacea they are made out to be - they can fail, they can be stolen, they are not tamper-proof, and they may cause harmful effects to the body. They are a foreign object and their primary function is to relate to the outside world not to the body itself (as in the case of pacemakers and cochlear implants). Fourth, chip implants at present do not give a person greater control over her space, but allow for others to control and to decrease the individual's autonomy and as a result decrease interpersonal trust at both societal and state levels. Trust is inexorably linked to both metaphysical and moral freedom. Therefore the naive position routinely heard in the public domain that if you have “nothing to hide, why worry?” misses the point entirely. Fifth, chip implants will create a presently unimaginable digital divide - we are not referring to computer access here, or Internet access, but access to another mode of existence. The “haves” (implantees) and the “have-nots” (non-implantees) will not be on speaking terms; perhaps this suggests a fresh interpretation to the biblical tower of Babel (Gen. 11:9).

In the scenario, where a universal ID is instituted, unless the implant is removed within its prescribed time, the body will adopt the foreign object and tie it to tissue. At this moment, there will be no exit strategy and no contingency plan; it will be a life sentence to upgrades, virus protection mechanisms, and inescapable intrusion. Imagine a working situation where your computer - the one that stores all your personal data - has been hit by a worm, and becomes increasingly inoperable and subject to overflow errors and connectivity problems. Now imagine the same thing happening with an embedded implant. There would be little choice other than to upgrade or to opt out of the networked world altogether.

A decisive step towards überveillance will be a unique and “non-refundable” identification number (ID). The universal drive to provide us all with cradle-to-grave unique lifetime identifiers (ULIs), which will replace our names, is gaining increasing momentum, especially after September 11. Philosophers have have argued that names are the signification of identity and origin; our names possess both sense and reference [24, p. 602f]. Two of the twentieth century's greatest political consciences (one who survived the Stalinist purges and the other the holocaust), Aleksandr Solzhenitsyn and Primo Levi, have warned us of the connection between murderous regimes and the numbering of individuals. It is far easier to extinguish an individual if you are rubbing out a number rather than a life history.

Aleksandr Solzhenitsyn recounts in The Gulag Archipelago (1918–56), (2007, p. 346f):

[Corrective Labor Camps] quite blatantly borrowed from the Nazis a practice which had proved valuable to them - the substitution of a number for the prisoner's name, his “I”, his human individuality, so that the difference between one man and another was a digit more or less in an otherwise identical row of figures … [i]f you remember all this, it may not surprise you to hear that making him wear numbers was the most hurtful and effective way of damaging a prisoner's self-respect.

Primo Levi writes similarly in his own well-known account of the human condition in The Drowned and the Saved (1989, p. 94f):

Altogether different is what must be said about the tattoo [the number], an altogether autochthonous Auschwitzian invention … [t]he operation was not very painful and lasted no more than a minute, but it was traumatic. Its symbolic meaning was clear to everyone: this is an indelible mark, you will never leave here; this is the mark with which slaves are branded and cattle sent to the slaughter, and this is what you have become. You no longer have a name; this is your new name.

And many centuries before both Solzhenitsyn and Levi were to become acknowledged as two of the greatest political consciences of our times, an exile on the isle of Patmos - during the reign of the Emperor Domitian - referred to the abuses of the emperor cult which was practiced in Asia Minor away from the more sophisticated population of Rome [37, pp. 176–196]. He was Saint John the Evangelist, commonly recognized as the author of the Book of Revelation (c. A.D. 95):

16 Also it causes all, both small and great, both rich and poor, both free and slave, to be marked on the right hand or the forehead, 17 so that no one can buy or sell unless he has the mark, that is, the name of the beast or the number of its name. 18 This calls for wisdom: let him who has understanding reckon the number of the beast, for it is a human number, its number is six hundred and sixty-six (Rev 13:16–18) [RSV, 1973].

The technological infrastructures—the software, the middleware, and the hardware for ULIs—are readily available to support a diverse range of humancentric applications, and increasingly those embedded technologies which will eventually support überveillance. Multi-national corporations, particularly those involved in telecommunications, banking, and health are investing millions (expecting literally billions in return) in identifiable technologies that have a tracking capability. At the same time the media, which in some cases may yield more sway with people than government institutions themselves, squanders its influence and is not intelligently challenging the automatic identification (auto-ID) trajectory. As if in chorus, blockbuster productions from Hollywood are playing up all forms of biometrics as not only hip and smart, but also as unavoidable mini-device fashion accessories for the upwardly mobile and attractive. Advertising plays a dominant role in this cultural tech-rap. Advertisers are well aware that the market is literally limitless and demographically accessible at all levels (and more tantalizingly from cradle-to-grave consumers). Our culture, which in previous generations was for the better part the vanguard against most things detrimental to our collective well-being, is dangerously close to bankrupt (it already is idol worshipping) and has progressively become fecund territory for whatever idiocy might take our fancy. Carl Bernstein [7] captured the atmosphere of recent times very well:

We are in the process of creating what deserves to be called the idiot culture. Not an idiot sub-culture, which every society has bubbling beneath the surface and which can provide harmless fun; but the culture itself. For the first time the weird and the stupid and the coarse are becoming our cultural norm, even our cultural ideal.

Despite the technological fixation with which most of the world is engaged, there is a perceptible mood of a collective disquiet that something is not as it should be. In the face of that, this self-deception of “wellness” is not only taking a stronger hold on us, but it is also being rationalized and deconstructed on many levels. We must break free of this dangerous daydream to make out the cracks that have already started to appear on the gold tinted rim of this seeming 21st century utopia. The machine, the new technicized “gulag archipelago” is ever pitiless and without conscience. It can crush bones, break spirits, and rip out hearts without pausing.

The authors of this article are not anti-government; nor are they conspiracy theorists (though we now know better than to rule out all conspiracy theories). Nor do they believe that these dark scenarios are inevitable. But we do believe that we are close to the point of no return. Others believe that point is much closer [1]. It remains for individuals to speak up and argue for, and to demand regulation, as has happened in several states in the United States where Acts have been established to avoid microchipping without an individual's consent, i.e., compulsory electronic tagging of citizens. Our politicians for a number of reasons will not legislate on this issue of their own accord, with some few exceptions. It would involve multifaceted industry and absorb too much of their time, and there is the fear they might be labelled anti-technology or worse still, failing to do all that they can to fight against “terror.” This is one of the components of the modern-day Realpolitik, which in its push for a transparent society is bulldozing ahead without any true sensibility for the richness, fullness, and sensitivity of the undergrowth. As an actively engaged community, as a body of concerned researchers with an ecumenical conscience and voice, we can make a difference by postponing or even avoiding some of the doomsday scenario outlined here.

Finally, the authors would like to underscore three main points. First, nowhere is it suggested in this paper that medical prosthetic or therapeutic devices are not welcome technological innovations. Second, the positions, projections, and beliefs expressed in this summary do not necessarily reflect the positions, projections, and beliefs of the individual contributors to this special section. And third the authors of the papers do embrace all that which is vital and dynamic with technology, but reject its rampant application and diffusion without studied consideration as to the potential effects and consequences.

References

1. Surveillance Society Clock 23:54 American Civil Liberties Union, Oct. 2007, [online] Available: http://www.aclu.org/privacy/spying/surveillancesocietyclock.html, accessed.

2. Norplant system contraceptive inserts, Oct. 2007, [online] Available: http://www.ama-assn.org/ama/pub/category/print/13593.html.

3. "Breaking news: Statement on microchipping", American Veterinary Medical Association, Oct. 2007, [online] Available: http://www.avma.org/ aa/microchip/breaking_news_070913_pf.asp.

4. B. Bacheldor, "AMA issues Ethics Code for RFID chip implants", RFID J., Oct. 2007, [online] Available: http://www.rfidjournal.com/article/ articleprint/3487/-1/1/.

5. E. Ball, K. Bond, Bess Marion v. Eddie Cafka and ECC Enterprises Inc., Oct. 2007, [online] Available: http://www. itmootcourt.com/2005%20Briefs/Petitioner/Team18.pdf.

6. "Implant chip to identify the dead", BBC News, Jan. 2006, [online] Available: http://news.bbc.co.Uk/1/hi/technology/4721175.stm. 

7. C. Bernstein, The Guardian, June 1992.

8. P. Burton, K. Stockhausen, The Australian Medical Association's Submission to the Legal and Constitutional's Inquiry into the Privacy Act 1988, Oct. 2007, [online] Available: http://www.ama.com.au/web.nsf/doc/ WEEN-69X6DV/\$file/Privacy_Submission_to_Senate_Committee. doc.

9. California privacy legislation, State of California:Office of Privacy Protection, July 2007, [online] Available: http://www.privacy.ca.gov/califlegis.htm.

10. "Thai wave disaster largest forensic challenge in years: Expert", Channel News Asia, Feb. 2005, [online] Available: http://www.channelnewsasia.com/stories/afp_asiapacific/view/125459/1/.html.

11. C. Chase, "VIP Verichip", Baja Beach House- Zona VIP, Oct. 2007, [online] Available: http:// www.baja-beachclub.com/bajaes/asp/zonavip2.aspx.

12. R. A. Clarke, "Information technology and dataveillance", Commun. ACM, vol. 31, no. 5, pp. 498-512, 1988.

13. S. Covacio, "Technological problems associated with the subcutaneous microchips for human identification (SMHId)", InSITE-Where Parallels Intersect, pp. 843-853, June 2003.

14. "13 diabetics implanted with VeriMed RFID microchip at Boston diabetes EXPO", Medical News Today, Oct. 2007, [online] Available: http://www.medicalnewstoday.com/articles/65560.php.

15. "Medical devices; General hospital and personal use devices; classification of implantable radiofrequency transponder system for patient identification and health information", U.S. Food and Drug Administration-Department of Health and Human Services, vol. 69, no. 237, Oct. 2007, [online] Available: http://www.fda.gov/ohrms/dockets/98fr/0427077.htm.

16. A. Gad, "Legislative Brief 06-13: Human Microchip Implantation", Legislative Briefs from the Legislative Reference Bureau, June 2006, [online] Available: http://www.legis.state.wi.us/lrb/pubs/Lb/06Lb13.pdf.

17. E. Guild, D. Bigo, "The Schengen Border System and Enlargement" in Police and Justice Co-operation and the New European Borders, European Monographs, pp. 121-138, 2002.

18. M. Hawthorne, "Refugees meeting hears proposal to register every human in the world", Sydney Morning Herald, July 2003, [online] Available: http://www.smh.com.au/breaking/2001/12/14/FFX058CU6VC.html.

19. "VeriChip enhances patient wander app", Health Data Management, Oct. 2007, [online] Available: http://healthdatamanagement.com/ HDMSearchResultsDetails.cfm?articleId=12361.

20. "VeriChip buys monitoring tech vendor", Health Data Management, July 2005, [online] Available: http://healthdatamanagement.com/ HDMSearchResultsDetails.cfm?articleId=12458.

21. "Chips keep tabs on babies moms", Health Data Management, Oct. 2005, [online] Available: http://healthdatamanagement.com/HDMSearchResultsDetails. cfm?articleId=15439.

22. "Baylor uses RFID to track newborns", Health Data Management, July 2007, [online] Available: http://healthdatamanagement.com/HDMSearchResultsDetails.cfm?articleId=15439.

23. U. Hengartner, P. Steenkiste, "Access control to people location information", ACM Trans. Information Syst. Security, vol. 8, no. 4, pp. 424-456, 2005.

24. "Names" in Oxford Companion to Philosophy, U.K., Oxford:Oxford Univ. Press, pp. 602f, 1995.

25. "Nietzsche Friedrich" in Oxford Companion to Philosophy, U.K., Oxford:Oxford Univ. Press, pp. 619-623, 1995.

26. "RFID tags equipped with GPS", Navigadget, Oct. 2007, [online] Available: http://www.navigadget.com/index.php/2007/06/27/rfid-tags-equipped-with-gps/.

27. "Me & my RFIDs", IEEE Spectrum, vol. 4, no. 3, pp. 14-25, Mar. 2007.

28. K. C. Jones, "California passes bill to ban forced RFID tagging", InformationWeek, Sept. 2007, [online] Available: http://www.informationweek.com/ shared/printableArticle.jhtml?articleID=201803861.

29. T. Lewan, "Microchips implanted in humans: High-tech helpers or Big Brother's surveillance tools?", The Associated Press, Oct. 2007, [online] Available: http://abcnews.go.com/print?id=3401306.

30. T. Lewan, Chip implants linked to animal tumors, Associated Press/ WashingtonPost.com, Oct. 2007, [online] Available: http://www.washingtonpost.com/wp-dyn/content/article/2007/09/09/AR2007090900467. html.

31. J. Meikle, "Pupils face tracking bugs in school blazers", The Guardian, Aug. 2007, [online] Available: http://www.guardian.co.uk/uk_news/ story/0, 2152979,00.

32. K. Michael, Selected Works of Dr. Katina Michael, Australia, Wollongong:Univ. of Wollongong, Oct. 2007, [online] Available: http://ro.uow.edu.au/kmichael/.

33. K. Michael, A. Masters, "Realised applications of positioning technologies in defense intelligence" in Applications of Information Systems to Homeland Security and Defense, IDG Press, pp. 164-192, 2006.

34. K. Michael, A. Masters, "The advancement of positioning technologies in defence intelligence" in Applications of Information Systems to Homeland Security and Defense, IDG Press, pp. 193-214, 2006.

35. K. Michael, M. G. Michael, "Towards chipification: The multifunctional body art of the net generation" in Cultural Attitudes Towards Technology and Communication, Estonia, Tartu:, pp. 622-641, 2006.

36. K. Michael, M. G. Michael, "Homo electricus and the continued speciation of humans" in The Encyclopedia of Information Ethics and Security, IGI Global, pp. 312-318, 2007.

37. M. G. Michael, Ch IX: Imperial cult in The Number of the Beast 666 (Revelation 13:16-18): Background Sources and Interpretation, Macquarie Univ., 1998.

38. M. G. Michael, "Überveillance: 24/7 × 365-People tracking and monitoring", Proc. 29 International Conference of Data Protection and Privacy Commissioners: Privacy Horizons Terra Incognita, 2007-Sept.-25-28, [online] Available: http://www.privacyconference2007.gc.ca/Terra_Incognita_program_E.html.

39. S. Morton, "Barcelona clubbers get chipped", BBC News, Oct. 2007, [online] Available: http://news.bbc.co.Uk/2/hi/technology/3697940.stm. 

40. D. Ratner, M. A. Ratner, Nanotechnology and Homeland Security: New Weapons for New Wars, U.S.Α., New Jersey:Prentice Hall, 2004.

41. J. H. Reichman, "RFID labeling in humans American Medical Association House of Delegates: Resolution: 6 (A-06)", Reference Committee on Amendments to Constitution and Bylaws, 2006, [online] Available: http://www. ama-assn.org/amal/pub/upload/mm/471/006a06.doc.

42. M. Reynolds, "Despite the hype microchip implants won't deliver security", Gartner Research, Oct. 2007, [online] Available: http://www.gartner.com/ DisplayDocument?doc_cd=121944.

43. "Singapore fights SARS with RFID", RFID J., Aug. 2005, [online] Available: http://www.rfidjournal.com/article/articleprint/446/-1/1/.

44. "I am not a number - Tracking Australian prisoners with wearable RFID tech", RFID Gazette, Oct. 2007, [online] Available: http://www. rfidgazette.org/2006/08/i_am_not_a_numb.html.

45. S. Rodotà, R. Capurro, "Ethical aspects of ICT implants in the human body", Opinion of the European Group on Ethics in Science and New Technologies to the European Commission N° 20 Adopted on 16/03/2005, Oct. 2007, [online] Available: http://ec.europa.eu/european_group_ethics/docs/ avis20_en.pdf.

46. "Papua Legislative Council deliberating microchip regulation for people with HIV/AIDS", Radio New Zealand International, Oct. 2007, [online] Available: http://www.rnzi.com/pages/news. php?op=read&id=33896.

47. R. M. Sade, "Radio frequency ID devices in humans Report of the Council on Ethical and Judicial Affairs: CEJA Report 5-A-07", Reference Committee on Amendments to Constitution and Bylaws, Oct. 2007, [online] Available: http://www.ama-assn.org/amal/pub/upload/ mm/369/ceja_5a07.pdf.

48. B. K. Schuerenberg, "Implantable RFID chip takes root in CIO: Beta tester praises new mobile device though some experts see obstacles to widespread adoption", Health Data Management, Feb. 2005, [online] Available: http://www.healthdatamanagement.com/HDMSearchResultsDetails. cfm?articleId=12232.

49. B. K. Schuerenberg, "Patients let RFID get under their skin", Health Data Management, Nov. 2005, [online] Available: http://healthdatamanagement. com/HDMSearchResultsDetails.cfm?articleId=12601.

50. N. D. Somba, "Papua considers 'chipping' people with HIV/ AIDS", The Jakarta Post, Oct. 2007, [online] Available: http://www.thejakartapost. com/yesterdaydetail.asp?fileid=20070724.G04.

51. M. L. Songini, "N.D. bans forced RFID chipping Governor wants a balance between technology privacy", ComputerWorld, Oct. 2007, [online] Available: http://www.computerworld.com/action/article.do?command =viewArticleBasic&taxonomyId=15&articleId=9016385&intsrc=h m_topic.

52. D. M. Snow, National Security For A New Era.: Globalization And Geopolitics, Addison-Wesley, 2005.

53. C. Swedberg, "RFID watches over school kids in Japan", RFID J., Oct. 2007, [online] Available: http://www.rfidjournal.com/article/ articleview/2050/1/1/.

54. C. Swedberg, "Alzheimer's care center to carry out VeriChip pilot", RFID J., Oct. 2007, [online] Available: http://www.rfidjournal.com/article/ articleview/3340/1/1/.

55. "Chips: High tech aids or tracking tools?", Fairfax Digital: The Age, Oct. 2007, [online] Available: http://www.theage.com.au/news/Technology/Microchip-Implants-Raise-Privacy-Concern/2007/07/22/1184560127138. html. 

56. "VeriChip Corporation adds more than 200 hospitals at the American College of Emergency Physicians (ACEP) Conference", VeriChip News Release, 2007-Oct.-11, [online] Available: http://www.verichipcorp.com/ news/1192106879.

57. W. Weissert, "Microchips implanted in Mexican officials", Associated Press, Oct. 2007, [online] Available: http://www.msnbc.msn.com/id/5439055/.

58. J. Wilson, "Girl to get tracker implant to ease parents' fears", The Guardian, Oct. 2002, [online] Available: http://www.guardian.co.uk/Print/0,3858,4493297,00. html.

59. Wisconsin Act 482, May 2006, [online] Available: http://www.legis.state. wi.us/2005/data/acts/05Act482.pdf.

60. J. Woolfolk, "Back off Boss: Forcible RFID implants outlawed in California", Mercury News, Oct. 2007, [online] Available: http://www.mercurynews. com/portlet/article/html/fragments/print_article.jsp?articleId=7162880.

61. Macquarie Dictionary, Sydney University, pp. 1094, 2009.

62. K. Michael, M. G. Michael, Innovative Automatic Identification and Location-Βased Services: From Bar Codes to Chip Implants, PA, Hershey:IGI Global, pp. 401, 2009

63. A. Griggieri, K. Michael, M. G. Michael, "The legal ramifications of microchipping people in the United States of America- A state legislative comparison", Ρroc. 2009 IEEE Int. Symp. Technology and Society, pp. 1-8, 2009.

64. A. Marburger, J. Coon, K. Fleck, T. Kremer, VeriChip™: Implantable RFID for The Health Industry, June 2005, [online] Available: http://www. thecivilrightonline.com/docs/Verichip_Implantable%20RFID.pdf.

65. 111TH CONGRESS 1ST SESSION H. R. 11 A BILL: To provide affordable quality health care for all Americans and reduce the growth in health care spending and for other purposes, 2010-Apr.-1, [online] Available: http://waysandmeans. house.gov/media/pdf/111/AAHCA09001xml.pdf.

66. Positive ID. 2010. Health-ID, May 2010, [online] Available: http://www.positiveidcorp.com/ health-id.html.

IEEE Keywords: Implants, TV, Data systems, National security, Pressing, Engines, Condition monitoring, Circuits,Feeds, Databases

Citation: M.G. Michael, Katina Michael, Toward a State of Überveillance, IEEE Technology and Society Magazine ( Volume: 29, Issue: 2, Summer 2010 ), pp. 9 - 16, Date of Publication: 01 June 2010, DOI: 10.1109/MTS.2010.937024

The Social, Cultural, Religious and Ethical Implications of Automatic Identification

Katina Michael, School of Information Technology & Computer Science, University of Wollongong, NSW, Australia 2500, katina@uow.edu.au

M.G. Michael, American Academy of Religion, PO Box U184, University of Wollongong, NSW, Australia 2500, mgm@uow.edu.au

Full Citation: Katina Michael, M.G. Michael, 2004, The Social, Cultural, Religious and Ethical Implications of Automatic Identification, Seventh International Conference on Electronic Commerce Research (ICER-7), University of Texas, Dallas, Texas, USA, June 10-13. Sponsored by ATSMA, IFIP Working Group 7.3, INFORMS Information Society.

Abstract

The number of automatic identification (auto-ID) technologies being utilized in eBusiness applications is growing rapidly. With an increasing trend toward miniaturization and wireless capabilities, auto-ID technologies are becoming more and more pervasive. The pace at which new product innovations are being introduced far outweighs the ability for citizens to absorb what these changes actually mean, and what their likely impact will be upon future generations. This paper attempts to cover a broad spectrum of issues ranging from the social, cultural, religious and ethical implications of auto-ID with an emphasis on human transponder implants. Previous work is brought together and presented in a way that offers a holistic view of the current state of proceedings, granting an up-to-date bibliography on the topic. The concluding point of this paper is that the long-term side effects of new auto-ID technologies should be considered at the outset and not after it has enjoyed widespread diffusion.

1.  Introduction

Automatic identification is the process of identifying a living or nonliving object without direct human intervention. Before auto-ID only manual identification techniques existed, such as tattoos [[i]] and fingerprints, which did not allow for the automatic capture of data (see exhibit 1.1). Auto-ID becomes an e-business application enabler when authorization or verification is required before a transaction can take place. Many researchers credit the vision of a cashless society to the capabilities of auto-ID. Since the 1960s automatic identification has proliferated especially for mass-market applications such as electronic banking and citizen ID. Together with increases in computer processing power, storage equipment and networking capabilities, miniaturization and mobility have heightened the significance of auto-ID to e-business, especially mobile commerce. Citizens are now carrying multiple devices with multiple IDs, including ATM cards, credit cards, private and public health insurance cards, retail loyalty cards, school student cards, library cards, gym cards, licenses to drive automobiles, passports to travel by air and ship, voting cards etc. More sophisticated auto-ID devices like smart card and radio-frequency identification (RFID) tags and transponders that house unique lifetime identifiers (ULI) or biometric templates are increasingly being considered for business-to-consumer (B2C) and government-to-citizen (G2C) transactions. For example, the United States (US) is enforcing the use of biometrics on passports due to the increasing threats of terrorism, and Britain has openly announced plans to begin implanting illegal immigrants with RFID transponders. Internationally, countries are also taking measures to decrease the multi-million dollar costs of fraudulent claims made to social security by updating their citizen identification systems.

Exhibit 1.1     Manual versus Automatic Identification Techniques

Exhibit 1.1     Manual versus Automatic Identification Techniques

2.  Literature Review

The relative ease of performing electronic transactions by using auto-ID has raised a number of social, cultural, religious and ethical issues. Among others, civil libertarians, religious advocates and conspiracy theorists have long cast doubts on the technology and the ultimate use of the information gathered by it. Claims that auto-ID technology impinges on human rights, the right to privacy, and that eventually it will lead to totalitarian control of the populace have been put forward since the 1970s. This paper aims to explore these themes with a particular emphasis on emerging human transponder implant technology. At present, several US companies are marketing e-business services that allow for the tracking and monitoring of individuals using RFID implants in the subcutaneous layer of the skin or Global Positioning System (GPS) wristwatches worn by enrollees. To date previous literature has not consistently addressed philosophical issues related to chip implants for humans in the context of e-business. In fact, popular online news sources like CNN [[ii]] and the BBC [[iii]] are among the few mainline publishers discussing the topic seriously, albeit in a fragmented manner. The credible articles on implanting humans are mostly interviews conducted with proponents of the technology, such as Applied Digital Solutions (ADSX) [[iv]] representatives who are makers of the VeriChip system solution [[v]]; Professor Kevin Warwick of the University of Reading who is known for his Cyborg 1.0 and 2.0 projects [[vi]]; and implantees like the Jacobs family in the US who bear RF/ID transponder implants [[vii]]. Block passages from these interviews are quoted throughout this paper to bring some of the major issues to the fore using a holistic approach.

More recently academic papers on human transponder implants covering various perspectives have surfaced on the following topics: legal and privacy [[viii], [ix]], ethics and culture [[x]], technological problems and health concerns [[xi]], technological progress [[xii]], trajectories [[xiii], [xiv]]. While there is a considerable amount of other popular material available especially on the Internet related to human chip implants, much of it is subjective and not properly sourced. One major criticism of these reports is that the reader is left pondering as to the authenticity of the accounts provided with little evidence to support respective claims and conclusions. Authorship of this literature is another problem. Often these articles are contributed anonymously, and when they do cite an author’s name, the level of technical understanding portrayed by the individual is severely lacking to the detriment of what he/she is trying to convey, even if there is a case to be argued. Thus, the gap this paper seeks to fill is to provide a sober presentation of cross-disciplinary perspectives on topical auto-ID issues with an emphasis on human transponder implants, and second to document some of the more thought-provoking discussion which has already taken place on the topic, complemented by a complete introductory bibliography.

3.  Method

Articles on auto-ID in general have failed to address the major philosophical issues using a holistic approach. For instance, Woodward [[xv]] is one of the few authors to have mentioned anything overly substantial about religious issues, with respect to biometric technology in a recognized journal. Previously the focus has basically been on privacy concerns and Big Brother fears. While such themes are discussed in this paper as well, the goal is to cover a broader list of issues than the commonplace. This is the very reason why two researchers with two very different backgrounds, one in science and the other in humanities, have collaborated to write this paper. A qualitative strategy is employed in this investigation to explore the major themes identified in the literature review. It should be noted however that legal, regulatory, economic and related policy issues such as standards, have been omitted because the aim of this paper is not to inform a purely technical audience or an audience which is strictly concerned with policy. It is aimed rather at the potential end-user of auto-ID devices and at technology companies who are continually involved in the process of auto-ID innovation.

Original material is quoted extensively to ensure that the facts are presented “as is.” There is nothing lost in simplified translations and the full weight of argument is retained, raw and uncut. The authors therefore cannot be accused of bias or misrepresentation. The sheer breadth of literature used for this investigation ensures reliability and validity in the findings. The narrative reporting style helps to guide readers through the paper, allowing individuals to form their own opinions and interpretations of what is being presented. Evidence for the issues discussed has been gathered from a wide variety of sources including offline and online documentation. High level content analysis has been performed to aid in the grouping of categories of discussion including social, cultural, religious and ethical issues that form the skeleton of the main body of the article as a way to identify emerging trends and patterns. Subcategories are also useful in identifying the second tier themes covered, helping to reduce complexity in analysis. The subcategories also allow for links to be made between themes. A highly intricate thread runs through the whole paper telling the story of not just auto-ID but the impacts of the information technology and telecommunications (IT&T) revolution [[xvi]]. There is therefore a predictive element to the paper as well which is meant to confront the reader with some present and future scenarios. The ‘what if’ questions are important as it is hoped they will generate public debate on the major social, cultural, religious and ethical implications of RFID implants in humans.

4. Towards Ubiquitous Computing

Section 4 is wholly dedicated to providing a background in which to understand auto-ID innovation; it will also grant some perspective to the tremendous pace of change in IT&T; and note some of the more grounded predictions about the future of computing. The focus is on wearable and ubiquitous computing within which auto-ID will play a crucial role. This section will help the reader place the evidence presented in the main body of the article into an appropriate context. The reader will thus be able to interpret the findings more precisely once the basic setting has been established, allowing each individual to form their own opinions about the issues being presented.

From personal computers (PCs) to laptops to personal digital assistants (PDAs) and from landline phones to cellular phones to wireless wristwatches, miniaturization and mobility have acted to shift the way in which computing is perceived by humans. Lemonick [[xvii]] captures this pace of change well in the following excerpt:

[i]t took humanity more than 2 million years to invent wheels but only about 5,000 years more to drive those wheels with a steam engine. The first computers filled entire rooms, and it took 35 years to make the machines fit on a desk- but the leap from desktop to laptop took less than a decade… What will the next decade bring, as we move into a new millennium? That’s getting harder and harder to predict.

Once a stationary medium, computers are now portable, they go wherever humans go [[xviii]]. This can be described as technology becoming more human-centric, “where products are designed to work for us, and not us for them” [[xix]]. Thus, the paradigm shift is from desktop computing to wearable computing [[xx]]. Quite remarkably in the pursuit of miniaturization, little has been lost in terms of processing power. “The enormous progress in electronic miniaturization make it possible to fit many components and complex interconnection structures into an extremely small area using high-density printed circuit and multichip substrates” [[xxi]]. We now have so-named Matchbox PCs that are no larger than a box of matches with the ability to house fully functional operating systems [[xxii]]. “The development of wearable computer systems has been rapid. Salonen [[xxiii]], among others [[xxiv]] are of the belief that “quite soon we will see a wide range of unobtrusive wearable and ubiquitous computing equipment integrated into our everyday wear”. The next ten years will see wearable computing devices become an integral part of our daily lives, especially as the price for devices keeps falling. Whether noticeable or not by users, the change has already begun. Technology is increasingly becoming an extension of the human body, whether it is by carrying smart cards or electronic tags [[xxv]] or even PDAs and mobile phones. Furui [[xxvi]] predicts that “[p]eople will actually walk through their day-to-day lives wearing several computers at a time.” Cochrane described this phenomenon as technology being an omnipresent part of our lives. Not only will devices become small and compact but they will be embedded in our bodies, invisible to anyone else [[xxvii]]. For the time being however, we are witnessing the transition period in which auto-ID devices especially are being trialled upon those who either i) desperately require their use for medical purposes or ii) who cannot challenge their application, such as in the case of armed forces or prison inmates. Eventually, the new technology will be opened to the wider market in a voluntary nature but will most likely become a de facto compulsory standard (i.e. such as in the case of the mobile phone today), and inevitably mandatory as it is linked to some kind of requirement for survival. Upon reflection, this is the pattern that most successful high-tech innovations throughout history have followed.

Mark Weiser first conceived the term “ubiquitous computing” to espouse all those small information systems (IS) devices, including calculators, electronic calendars and communicators that users would carry with them every day [[xxviii]]. It is important to make the distinction between ubiquitous and wearable computing. They “have been posed as polar opposites even though they are often applied in very similar applications” [[xxix]]. Kaku [[xxx]] stated that ubiquitous computing, is the time “when computers are all connected to each other and the ratio of computers to people flips the other way, with as many as one hundred computers for every person.” This latter definition implies a ubiquitous environment that allows the user to seamlessly interface with computer systems around them. Environments of the future are predicted to be context-aware so that users are not disturbed in every context, save for when it is suitable [[xxxi]]. Kortuem [[xxxii]] stated that “[s]uch environments might be found at the home, at the office, at factory floors, or even vehicles.” There is some debate however of where to place sensors in these environments. For example, should they be located around the room or should they be located on the individual. Locating sensors around the room enforces certain conditions on an individual, while locating sensors on an individual means that that person is actually in control of their context. The latter case also requires less localized infrastructure and a greater degree of freedom. Rhodes et al. [29] argue that by “properly combining wearable computing and ubiquitous computing, a system can have the advantages of both.”

5.  Social Issues

5.1 Privacy Concerns and Big Brother Fears

Starner [[xxxiii]] makes the distinction between privacy and security concerns. “Security involves the protection of information from unauthorized users; privacy is the individual’s right to control the collection and use of personal information.” Mills [[xxxiv]] is of the opinion that some technology, like communications, is not non-neutral but totalitarian in nature and that it can make citizens passive. “These glamorous technologies extend and integrate cradle-to-grave surveillance, annihilating all concept of a right to personal privacy, and help consolidate the power of the national security state… every technology, being a form of power, has implicit values and politics…” Over the years terms like Big Brother [[xxxv], [xxxvi]] and function creep [[xxxvii]] have proliferated to correspond to the all-seeing eyes of government and to the misuse and abuse of data. In most western countries data matching programs were constructed, linked to a unique citizen ID, to cross-check details provided by citizens, claims made, and benefits distributed [[xxxviii], [xxxix]]. More recently however, the trend has tended towards information centralization between government agencies based around the auspices of a national ID to reduce fraud [[xl]] and to combat terrorism [[xli]]. Currently computers allow for the storage and searching of data gathered like never before [[xlii]]. The range of automated data collection devices continues to increase to include systems such as bar codes (with RF capabilities), magnetic-stripe card, smart card and a variety of biometric techniques, increasing the rapidity and ease at which information is gathered. RFID transponders especially have added a greater granularity of precision in in-building and campus-wide solutions, given the wireless edge, allowing information to be gathered within a closed environment, anywhere/ anytime, transparent to the individual carrying the RFID badge or tag.

Now, while auto-ID itself is supposed to ensure privacy, it is the ease with which data can be collected that has some advocates concerned about the ultimate use of personal information. While the devices are secure, breaches in privacy can happen at any level- especially at the database level where information is ultimately stored after it is collected [[xliii]]. How this information is used, how it is matched with other data, who has access to it, is what has caused many citizens to be cautious about auto-ID in general [[xliv]]. Data mining also has altered how data is filtered, sifted and utilized all in the name of customer relationship management (CRM). It is not difficult to obtain telemarketing lists, census information aggregated to a granular level, and mapping tools to represent market segments visually. Rothfeder [[xlv]] states:

[m]edical files, financial and personnel records, Social Security numbers, and telephone call histories- as well as information about our lifestyle preferences, where we shop, and even what car we drive- are available quickly and cheaply.

Looking forward, the potential for privacy issues linked to chip implants is something that has been considered but mostly granted attention by the media. Privacy advocates warn that such a chip would impact civil liberties in a disastrous way [[xlvi]]. Even Warwick, himself, is aware that chip implants do not promote an air of assurance:

Looking back, Warwick admits that the whole experiment [Cyborg 1.0] “smacked of Big Brother.” He insists, however, that it’s important to raise awareness of what’s already technically possible so that we can remain in the driver’s seat. “I have a sneaking suspicion,” he says, “that as long as we’re gaining things, we’ll yell ‘Let’s have Big Brother now!’ It’s when we’re locked in and the lights start going off- then Big Brother is a problem.” [[xlvii]]

In this instance, Warwick has made an important observation. So long as individuals are “gaining” they generally will voluntarily part with a little more information. It is when they stop gaining and blatantly start being taken advantage of that the idea of Big Brother is raised. On that point, chip implants promise the convenience of not having to carry a multitude of auto-ID devices, perhaps not even a wallet or purse.

According to McGinity [18] “[e]xperts say it [the chip] could carry all your personal information, medical background, insurance, banking information, passport information, address, phone number, social security number, birth certificate, marriage license.” This kind of data collection is considered by civil libertarians to be “crypto-fascism or high-tech slavery” [[xlviii]]. The potential for abuse cannot be overstated [[xlix]]. Salkowski agrees pointing to the ADSX VeriChip system, stating that police, parents and ADSX employees could abuse their power. “It might even be possible for estranged spouses, employers and anyone else with a grudge to get their hands on tracking data through a civil subpoena” [[l]]. Hackers too, could try their hand at collecting data without the knowledge of the individual, given that wireless transmission is susceptible to interception. At the same time, the chip implant may become a prerequisite to health insurance and other services. “You could have a scenario where insurance companies refuse to insure you unless you agree to have a chip implant to monitor the level of physical activity you do” says Pearson of British Telecom [[li]]. This should not be surprising given that insurance companies already ask individuals for a medical history of illnesses upon joining a new plan. Proponents say the chip would just contain this information more accurately [7]. Furthermore, “[c]ost-conscious insurance companies are sure to be impressed, because the portability of biomems [i.e., a type of medical chip implant] would allow even a seriously ill patient to be monitored after surgery or treatment on an outpatient basis” [[lii]]. Now a chip storing personal information is quite different to one used to monitor health 24x7x365 and then to relay diagnoses to relevant stakeholders. As Chris Hoofnagle, an attorney for the Electronic Privacy Information Centre in Washington, D.C., pointed out, “[y]ou always have to think about what the device will be used for tomorrow” [[liii]]. In its essential aspect, this is exactly the void this paper has tried to fill.

5.2 Mandatory Proof of Identification

In the US in 2001 several bills were passed in Congress to allow for the creation of three new Acts related to biometric identification of citizens and aliens, including the Patriot Act, Aviation and Transport Security Act, and the Enhanced Border Security and Visa Entry Reform Act. If terrorism attacks continue to increase in frequency, there is a growing prospect in the use of chip implants for identification purposes and GPS for tracking and monitoring. It is not an impossible scenario to consider that one day these devices may be incorporated into national identification schemes. During the SARS (severe acute respiratory syndrome) outbreak, Singapore [[liv]] and Taiwan [[lv]] considered going as far as tagging their whole population with RFID devices to monitor automatically the spread of the virus. Yet, independent of such random and sporadic events, governments worldwide are already moving toward the introduction of a single unique ID to cater for a diversity of citizen applications. Opinions on the possibility of widespread chip implants in humans range from “it would be a good idea,” to “it would be a good idea, but only for commercial applications not government applications,” to “this should never be allowed to happen”. Leslie Jacobs, who was one of the first to receive a VeriChip told Scheeres [[lvi]], “[t]he world would be a safer place if authorities had a tamper-proof way of identifying people… I have nothing to hide, so I wouldn’t mind having the chip for verification… I already have an ID card, so why not have a chip?” It should be noted that some tracking and monitoring systems can be turned off and on by the wearer, making monitoring theoretically voluntary [[lvii]]. Sullivan a spokesperson for ADSX, said: “[i]t will not intrude on personal privacy except in applications applied to the tracking of criminals” [49]. ADSX have claimed on a number of occasions that it has received more than two thousand emails from teenagers volunteering to be the next to be “chipped” [[lviii]]. There are others like McClimans [[lix]] that believe that everyone should get chipped. Cunha Lima, a Brazilian politician who also has a chip implant is not ignorant of the potential for invasion of privacy but believes the benefits outweigh the costs and that so long as the new technology is voluntary and not mandatory there is nothing to worry about. He has said, “[i]f one chooses to ‘be chipped,’ then one has considered the consequences of that action” [[lx]]. Lima argues that he feels more secure with an implant given the number of kidnappings in South America of high profile people each year- at least this way his location is always known.

Professor Brad Meyers of the Computer Science Department at Carnegie Mellon University believes that the chip implant technology has a place but should not be used by governments. Yet the overriding sentiment is that chip implants will be used by government before too long. Salkowski [50] has said, “[i]f you doubt there are governments that would force at least some of their citizens to carry tracking implants, you need to start reading the news a little more often.” Black [53] echoes these sentiments: “Strictly voluntary? So far so good. But now imagine that same chip being used by a totalitarian government to keep track of or round up political activists or others who are considered enemies of the state. In the wrong hands, the VeriChip could empower the wrong people.” In a report written by Ramesh [[lxi]] for the Franklin Pierce Law Centre the prediction is made that: 

[a] national identification system via microchip implants could be achieved in two stages: Upon introduction as a voluntary system, the microchip implantation will appear to be palatable. After there is a familiarity with the procedure and a knowledge of its benefits, implantation would be mandatory.

Bob Gellman, a Washington privacy consultant, likens this to “a sort of modern version of tattooing people, something that for obvious reasons- the Nazis tattooed numbers of people- no one proposes” [49, [lxii], [lxiii]]. The real issue at hand as Gellman sees it is “who will be able to demand that a chip be implanted in another person.” Mieszkowski supports Gray by observing how quickly a new technological “option” can become a requirement. Resistance after the voluntary adoption stage can be rather futile if momentum is leading the device towards a mandatory role.

McMurchie [[lxiv]] reveals the subtle progression toward embedded devices:

[a]s we look at wearable computers, it’s not a big jump to say, ‘OK, you have a wearable, why not just embed the device?’… And no one can rule out the possibility that employees might one day be asked to sport embedded chips for ultimate access control and security…

Professor Chris Hables Gray uses the example of prospective military chip implant applications. How can a marine, for instance, resist implantation? Timothy McVeigh, convicted Oklahoma bomber, claimed that during the Gulf War, he was implanted with a microchip against his will. The claims have been denied by the U.S. military [[lxv]], however the British Army is supposedly considering projects such as APRIL (Army Personnel Rationalization Individual Listings) [51]. Some cyberpunks have attempted to counteract the possibility of enforced implantation. One punk known by the name of “Z.L” is an avid reader of MIT specialist publications like open|DOOR MIT magazine on bioengineering and beyond. Z.L.’s research has indicated that:

[i]t is only a matter of time… before technology is integrated within the body. Anticipating the revolution, he has already taught himself how to do surgical implants and other operations. “The state uses technology to strengthen its control over us,” he says. “By opposing this control, I remain a punk. When the first electronic tags are implanted in the bodies of criminals, maybe in the next five years, I’ll know how to remove them, deactivate them and spread viruses to roll over Big Brother” [25].

5.3 Health Risks

Public concern about electromagnetic fields from cellular phones was a contentious issue in the late 1990s. Now it seems that the majority of people in More Developing Countries (MDCs) have become so dependent on mobile phones that they are disregarding the potential health risks associated with the technology [[lxvi]]. Though very little has been proven concretely, most terminal manufacturers do include a warning with their packaging, encouraging users not to touch the antenna of the phone during transmission [[lxvii]]. Covacio [11] is among the few authors to discuss the potential technological problems associated with microchips for human ID from a health perspective. In his paper he provides evidence why implants may impact humans adversely, categorizing these into thermal (i.e. whole/partial rise in body heating), stimulation (i.e. excitation of nerves and muscles) and other effects most of which are currently unknown. He states that research into RFID and mobile telephone technology [11]:

...has revealed a growing concern with the effects of radio frequency and non-ionizing radiation on organic matter. It has been revealed a number of low-level, and possible high-level risks are associated with the use of radio-frequency technology. Effects of X-rays and gamma rays have been well documented in medical and electronic journals…

In considering future wearable devices, Salonen [[lxviii]] puts forward the idea of directing antenna away from the head where “there may be either a thermal insult produced by power deposition in tissue (acute effects) or other (long-term) effects” to midway between the shoulder and elbow where radiation can be pushed outward from the body. Yet chip implants may also pose problems, particularly if they are active implants that contain batteries and are prone to leakage if transponders are accidentally broken. Geers et al. [[lxix]] write the following regarding animal implants.

Another important aspect is the potential toxic effect of the battery when using active transponders. Although it should be clear that pieces of glass or copper from passive tags are not allowed to enter the food chain. When using electronic monitoring with the current available technology, a battery is necessary to guarantee correct functioning of sensors when the transponder is outside the antenna field. If the transponder should break in the animal’s body, battery fluid may escape, and the question of toxological effects has to be answered.

In fact, we need only consider the very real problems that women with failed silicon breast implants have had to suffer. Will individuals with chip implants, twenty years down the track, be tied up in similar court battles and with severe medical problems? Surgical implantation, it must also be stated, causes some degree of stress in an animal and it takes between four to seven days for the animal to return to equilibrium [69]. Most certainly some discomfort must be felt by humans as well. In the Cyborg 1.0 project, Warwick was advised to leave the implant under his skin for only ten days. According to Trull [[lxx]], Warwick was taking antibiotics to fight the possibility of infection. Warwick also reportedly told his son while playing squash during Cyborg 1.0: “Whatever you do, don’t hit my arm. The implant could just shatter, and you’ll have ruined your father’s arm for life” [[lxxi]]. It is also worthwhile noting Warwick’s appearance after the Cyborg 2.0 experiment. He looked pale and weary in press release photographs, like someone who had undergone a major operation. Covacio [11] believes ultimately that widespread implantation of microchips in humans will lead to detrimental effects to them and the environment at large. Satellite technology (i.e. the use of GPS to locate individuals), microwave RF and related technological gadgetry will ultimately “increase health problems and consequentially increase pressure on health services already under economic duress.”

6. Cultural Issues

6.1 The Net Generation

When the ENIAC was first made known to the public in February of 1946 reporters used “anthropomorphic” and “awesome characterizations” to describe the computer. The news was received with skepticism by citizens who feared the unknown. In an article titled “The Myth of the Awesome Thinking Machine”, Martin [[lxxii]] stated that the ENIAC was referred to in headlines as “a child, a Frankenstein, a whiz kid, a predictor and controller of weather, and a wizard”. Photographs of the ENIAC used in publications usually depicted the computer to completely fill a small room, from wall-to-wall and floor-to-ceiling. People are usually shown interacting with the machine, feeding it with instructions, waiting for results and monitoring its behavior. One could almost imagine that the persons in the photographs are ‘inside the body’ of the ENIAC [[lxxiii]]. Sweeping changes have taken place since that time, particularly since the mid 1980s. Consumers now own personal computers (PCs) in their homes- these are increasingly being networked- they carry laptop computers and mobile phones and chip cards, and closely interact with public automated kiosks. Relatively speaking, it has not taken long for people to adapt to the changes that this new technology has heralded. Today we speak of a Net Generation (N-Geners) who never knew a world without computers or the Internet [[lxxiv]]; for them the digital world is as ubiquitous as the air that they breathe. What is important to N-Geners is not how they got to where they are today but what digital prospects the future holds.

“[O]ur increasing cultural acceptance of high-tech gadgetry has led to a new way of thinking: robotic implants could be so advantageous that people might actually want to become cybernetic organisms, by choice. The popularization of the cyberpunk genre has demonstrated that it can be hip to have a chip in your head” [70].

6.2 Science Fiction Genre

The predictions of science fiction writers have often been promoted through the use of print, sound and visual mediums. Below is a list of sci-fi novels, films and television series that undoubtedly have influenced and are still influencing the trajectory of auto-ID. Chris Hables Gray tells his students “…that a lot of the best cyborgology has been done in the mass media and in fiction by science fiction writers, and science fiction movie producers, because they’re thinking through these things” [[lxxv]]. The popular 1970s series of Six Million Dollar Man, for instance, began as follows: “We can rebuild him. We have the technology. We have the capability to make the world’s first Bionic man.” Today bionic limbs are a reality and no longer science fiction [[lxxvi]]. More recently AT&T’s Wireless mMode magazine alluded to Start Trek [[lxxvii]]:

They also talked about their expectations- one media executive summed it up best, saying, “Remember that little box that Mr. Spock had on Star Trek? The one that did everything? That’s what I’d like my phone to be…”

Beyond auto-ID we find a continuing legacy in sci-fi genre toward the electrification of humans- from Frankenstein to Davros in Dr Who, and from Total Recall to Johnny Mnemonic (see exhibit 1.2). While all this is indeed ‘merely’ sci-fi, it is giving some form to the word, allowing the imagination to be captured in powerful images, sounds and models. What next? A vision of a mechanized misery [[lxxviii]] as portrayed in Fritz Lang’s 1927 cult film classic Metropolis? Only this time instead of being at the mercy of the Machine, we have gone one step further and invited the Machine to reside inside the body, and marked it as a ‘technological breakthrough’ as well. As several commentators have noted, “[w]e live in an era that… itself often seems like science fiction, and Metropolis has contributed powerfully to that seeming” [[lxxix]].

Exhibit 1.2     Sci-Fi Film Genre Pointing to the Electrification of Humans

Exhibit 1.2     Sci-Fi Film Genre Pointing to the Electrification of Humans

Some of the more notable predictions and social critiques are contained within the following novels: Frankenstein (Shelley 1818), Paris in the 20th Century (Verne 1863), Looking Backward (Bellamy 1888), The Time Machine (Wells 1895), R.U.R. (Kapek 1917), Brave New World (Huxley 1932), 1984 (Orwell 1949), I, Robot (Asimov 1950), Foundation (Asimov 1951-53, 1982), 2001: A Space Odyssey (Clarke 1968), Blade Runner (Dick 1968), Neuromancer (Gibson 1984), The Marked Man (Ingrid 1989), The Silicon Man (Platt 1991), Silicon Karma (Easton 1997). The effects of film have been even more substantial on the individual as they have put some form to the predictions. These include: Metropolis (Fritz Lang 1927), Forbidden Planet (Fred Wilcox 1956), Fail Safe (Sidney Lumet 1964), THX-1138 (George Lucas 1971), 2001: A Space Odyssey (Stanley Kubrick 1968), The Terminal Man (George Lucas 1974), Zardoz (John Boorman 1974), Star Wars (George Lucas 1977), Moonraker (Lewis Gilbert II 1979), Star Trek (Robert Wise 1979), For Your Eyes Only (John Glen II 1981), Blade Runner (Ridley Scott 1982), War Games (John Badham 1983), 2010: The Year We Make Contact (Peter Hyams 1984), RoboCop (Paul Verhoeven, 1987), Total Recall (Paul Verhoeven 1990), The Terminator Series, Sneakers (Phil Alden Robinson 1992), Patriot Games (Phillip Noyce 1992), The Lawnmower Man (Brett Leonard 1992), Demolition Man (Marco Brambilla 1993), Jurassic Park (Steven Speilberg 1993), Hackers (Iain Softley 1995), Johnny Mnemonic (Robert Longo 1995), The NET (Irwin Winkler 1995) [[lxxx]], Gattaca (Andrew Niccol 1997) Enemy of the State (Tony Scott 1998), Fortress 2 (Geoff Murphy 1999), The Matrix (L. Wachowski & A. Wachowski 1999), Mission Impossible 2 (John Woo 2000), The 6th Day (Roger Spottiswoode 2000). Other notable television series include: Dr Who, Lost in Space, Dick Tracy, The Jetsons, Star Trek, Batman, Get Smart, Six Million Dollar Man, Andromeda, Babylon 5, Gasaraki, Stargate SG-1, Neon Genesis Evangelion, FarScape, and X-Files.  

6.3 Shifting Cultural Values

Auto-ID and more generally computer and network systems have influenced changes in language, art [[lxxxi]], music and film. An article by Branwyn [[lxxxii]] summarizes these changes well.

Language [[lxxxiii]]: “Computer network and hacker slang is filled with references to “being wired” or “jacking in” (to a computer network), “wetware” (the brain), and “meat” the body”.
Music: “Recent albums by digital artists Brian Eno, Clock DVA, and Frontline Assembly sport names like Nerve Net, Man Amplified and Tactical Neural Implant.” See also the 1978 album by Kraftwerk titled “The Man Machine”.
Film: “Science fiction films, from Robocop to the recent Japanese cult film Tetsuo: The Iron Man, imprint our imaginations with images of the new.”

Apart from the plethora of new terms that have been born from the widespread use of IT&T and more specifically from extropians (much of which have religious connotations or allusions [[lxxxiv]]), it is art, especially body art that is being heavily influenced by chip implant technology. Mieszkowski [49] believes that “chipification” will be the next big wave in place of tattoos, piercing and scarification (see exhibit 1.3). In the U.S. it was estimated in 2001 that about two hundred Americans had permanently changed their bodies at around nine hundred dollars per implant, following a method developed by Steve Hayworth and Jon Cobb [25].

Exhibit 1.3     The New Fashion: Bar Code Tattoos, Piercing & Chips

Exhibit 1.3     The New Fashion: Bar Code Tattoos, Piercing & Chips

Canadian artist Nancy Nisbet has implanted microchips in her hands to better understand how implant technology may affect the human identity. The artist told Scheeres [[lxxxv]], “I am expecting the merger between human and machines to proceed whether we want it to or not…” As far back as 1997, Eduardo Kac “inserted a chip into his ankle during a live performance in Sao Paulo, then registered himself in an online pet database as both owner and animal” [86]. Perhaps the actual implant ceremony was not Kac’s main contribution but the subsequent registration onto a pet database. Other artists like Natasha Vita More and Stelarc have ventured beyond localized chip implants. Their vision is of a complete prosthetic body that will comprise of nanotechnology, artificial intelligence, robotics, cloning, and even nanobots [75]. More calls her future body design Primo 3M Plus. Stelarc’s live performances however, have been heralded as the closest thing there is to imagining a world where the human body will become obsolete [[lxxxvi]].

A Stelarc performance… usually involves a disturbing mix of amplified sounds of human organs and techno beats, an internal camera projecting images of his innards, perhaps a set of robotic legs or an extra arm, or maybe tubes and wires connecting the performer’s body to the internet with people in another country manipulating the sensors, jerking him into a spastic dance. It’s a dark vision, but it definitely makes you think [75].

Warwick [[lxxxvii]] believes that the new technologies “will dramatically change [art], but not destroy it.”

6.4 Medical Marvels or Human Evolution

As Sacleman wrote in 1967 “...the impact of automation on the individual involve[d] a reconstruction of his values, his outlook and his way of life” [[lxxxviii]]. Marshall McLuhan [[lxxxix], [xc]] was one of the first explorers to probe how the psycho-social complex was influenced by electricity. “Electricity continually transforms everything, especially the way people think, and confirms the power of uncertainty in the quest for absolute knowledge.” [[xci]]. Numerous examples can be given to illustrate these major cultural changes- from the use of electricity for household warmth, to wide area networks (WAN) enabling voice and data communications across long distances, to magnetic-stripe cards used for credit transactions [[xcii], [xciii], [xciv], [xcv]]. But what of the direct unification of humans and technology, i.e., the fusion between flesh and electronic circuitry [[xcvi], [xcvii], [xcviii]]? Consider for a moment the impact that chip implants have had on the estimated 23,000 cochlear recipients in the US. A medical marvel perhaps but it too, not without controversy. There are potentially 500,000 hearing impaired persons that could benefit from cochlear implants [[xcix]] but not every deaf person wants one.

Some deaf activists… are critical of parents who subject children to such surgery [cochlear implants] because, as one charged, the prosthesis imparts “the nonhealthy self-concept of having had something wrong with one’s body” rather than the “healthy self-concept of [being] a proud Deaf” [[c]].

Assistant Professor Scott Bally of Audiology at Gallaudet University has said: “Many deaf people feel as though deafness is not a handicap. They are culturally deaf individuals who have successfully adapted themselves to being deaf and feel as though things like cochlear implants would take them out of their deaf culture, a culture which provides a significant degree of support” [82].

Putting this delicate debate aside it is here that some delineation can be made between implants that are used to treat an ailment or disability (i.e. giving sight to the blind and hearing to the deaf), and implants that may be used for enhancing human function (i.e. memory). Some citizens are concerned about the direction of the human species as future predictions of fully functional neural implants are being made by credible scientists. “[Q]uestions are raised as to how society as a whole will relate to people walking around with plugs and wires sprouting out of their heads. And who will decide which segments of the society become the wire-heads” [82]? Those who can afford the procedures perhaps? And what of the possibility of brain viruses that could be fatal and technological obsolescence that may require people to undergo frequent operations? Maybury [[ci]] believes that humans are already beginning to suffer from a type of “mental atrophy” worse than that that occurred during the industrial revolution and that the only way to fight it is to hang on to those essential skills that are required for human survival. The question remains whether indeed it is society that shapes technology [[cii]] or technology that shapes society [[ciii]]. Inevitably it is a dynamic process of push and pull that causes cultural transformations over time.

7 Religious Issues

7.1 The Mark of the Beast

Ever since the bar code symbology UPC (Universal Product Code) became widespread some Christian groups have linked auto-ID to the “mark” in the Book of Revelation (13:18): “the number of the beast… is 666” [[civ], [cv], [cvi]]. Coincidentally, the left (101), centre (01010) and right (101) border codes of the UPC bars are encoded 6, 6, 6 (see exhibit 1.4). As it is now an established standard for every non-perishable item to be bar coded there was a close association with the prophecy: “so that no one could buy or sell unless he had the mark” (Rev 13:17). In full, verses 16-18 of chapter 13 of Revelation read as follows:

He also forced everyone, small and great, rich and poor, free and slave, to receive a mark on his right hand or on his forehead, so that no one could buy or sell unless he had the mark, which is the name of the beast or the number of his name. This calls for wisdom. If anyone has insight, let him calculate the number of the beast, for it is man’s number. His number is 666. [[cvii]]

According to some Christians, this reference would appear to be alluding to a mark on or in the human body, the prediction being made that the UPC would eventually end up on or under human skin [[cviii]]. As the selection environment of auto-ID devices grew, the interpretation of the prophecy further developed as to the actual guise of the mark. It was no longer interpreted to be ‘just’ the bar code (see exhibit 1.4). Some of the more prominent religious web sites that discuss auto-ID and the number of the beast include: http://www.666soon.com (2003), http://www.greaterthings.com (2003), http://www.countdown.com.org (2003), http://www.raidersnewsupdate.com (2003), http://www.light1998.com (2003) and http://www.av1611.org (1996). At first the sites focused on bar code technology, now they have grown to encompass a plethora of auto-ID technologies, especially biometrics and looming chip implants. For a thorough analysis of the background, sources and interpretation of the “number of the beast” see M.G. Michael’s thesis [[cix]].

Card technology such as magnetic-stripe and smart cards became the next focus as devices that would gradually pave the way for a permanent ID for all citizens globally: “He also forced everyone, small and great, rich and poor, free and slave, to receive a mark…” (Rev 13:16). Biometrics was then introduced and immediately the association was made that the “mark” [charagma] would appear on the “right hand” (i.e. palmprint or fingerprint) or on the “forehead” (facial/ iris recognition) as was supposedly prophesied (Rev. 13:16). For the uses of charagma in early Christian literature see Arndt and Gingrich [[cx]]. Short of calling this group of people fundamentalists, as Woodward [15] refers to one prominent leader, Davies is more circumspect [[cxi]]:

“I think they’re legitimate [claims]. People have always rejected certain information practices for a variety of reasons: personal, cultural, ethical, religious and legal. And I think it has to be said that if a person feels bad for whatever reason, about the use of a body part then that’s entirely legitimate and has to be respected”.

Finally RF/ID transponders made their way into pets and livestock for identification, and that is when some Christian groups announced that the ‘authentic’ mark was now possible, and that it was only a matter of time before it would find its way into citizen applications [[cxii]]. Terry Cook [[cxiii]], for instance, an outspoken religious commentator and popular author, “worries the identification chip could be the ‘mark of the beast’, an identifying mark that all people will be forced to wear just before the end times, according to the Bible” [[cxiv]]. The description of an implant procedure for sows that Geers et al. [69] gives, especially the section about an incision being made on the skin, is what some religious advocates fear may happen to humans as well in the future.

When the thermistor was implanted the sows were restrained with a lasso. The implantation site was locally anaesthetized with a procaine (2%) injection, shaved and disinfected. After making a small incision in the skin, the thermistor was implanted subcutaneously, and the incision was closed by sewing. The position of the thermistor (accuracy 0.1C) was wire-connected to a data acquisition system linked to a personal computer.

“Religious advocates say it [i.e. transponder implants] represents ‘the mark of the Beast’, or the anti-Christ” [[cxv]]. Christians who take this mark, for whatever reason, are said to be denouncing the seal of baptism, and accepting the Antichrist in place of Christ [[cxvi], [cxvii], [cxviii]]. Horn [[cxix]] explains:

[m]any Christians believe that, before long, an antichrist system will appear. It will be a New World Order, under which national boundaries dissolve, and ethnic groups, ideologies, religions, and economics from around the world, orchestrate a single and dominant sovereignty… According to popular Biblical interpretation, a single personality will surface at the head of the utopian administration… With imperious decree the Antichrist will facilitate a one-world government, universal religion, and globally monitored socialism. Those who refuse his New World Order will inevitably be imprisoned or destroyed.

References discussing the New World Order include Barnet and Cavanagh [[cxx]], Wilshire [[cxxi]], and Smith [[cxxii]].

Exhibit 1.4     The Mark of the Beast as Shown on GreaterThings.com

Exhibit 1.4     The Mark of the Beast as Shown on GreaterThings.com

Companies that specialize in the manufacture of chip implant solutions, whether for animals or for humans, have been targeted by some religious advocates. The bad publicity has not been welcomed by these companies- some have even notably “toned down” the graphic visuals on their web sites so that they do not attract the wrong ‘type’ of web surfers. While they are trying to promote an image of safety and security, some advocates have associated company brands and products with apocalyptic labels. Some of the company and product names include: Biomark, BioWare, BRANDERS, MARC, Soul Catcher, Digital Angel and Therion Corporation. Perhaps the interesting thing to note is that religious advocates and civil libertarians agree that ultimately the chip implant technology will be used by governments to control citizens. ADSX is one of the companies that have publicly stated that they do not want adverse publicity after pouring hundreds of thousands of dollars into research and development and the multi-million dollar purchase of the Destron Fearing company. So concerned were they that they even appeared on the Christian talk show The 700 Club, emphasizing that the device would create a lot of benefits and was not meant to fulfill prophecy [60]. A spokesperson for ADSX said: “[w]e don’t want the adverse publicity. There are a number of privacy concerns and religious implications- fundamentalist Christian groups regard [i.e., implanting computer chips] as the Devil’s work” [51].  According to Gary Wohlscheid, the president of The Last Day Ministries, the VeriChip could well be the mark.  Wohlscheid believes that out of all the auto-ID technologies with the potential to be the mark, the VeriChip is the closest. About the VeriChip he says however, “[i]t’s definitely not the final product, but it’s a step toward it. Within three to four years, people will be required to use it. Those that reject it will be put to death” [56]. These are, of course, the positions of those who have entered the debate from the so-called fundamentalist literalist perspective and represent the more vocal and visible spectrum of contemporary “apocalyptic” Christianity. In this context the idea of fundamentalism seems to be a common label today, for anyone within the Christian community who questions the trajectory of technological advancement.

With respect to the potential of brain chips in the perceived quest for “immortality” [13, 14], many Christians across the denominational confession see this as an attempt to usurp the Eternal Life promised by God, in Jesus Christ, through the Holy Spirit. This is similar to the case of human cloning, where specialist geneticists are accused of trying to play God by usurping the Creator’s role. However, the area is notoriously grey here; when for instance, do implants for medical breakthroughs become acceptable versus those required for purposes of clear identification? In the future the technology in question could end up merging the two functions onto the single device. This is a real and very possible outcome, when all factors, both market and ethical, are taken on board by the relevant stakeholders. Ultimately, for most members of a believing religious community, this subject revolves around the most important question of individual freedom and the right to choose [[cxxiii], [cxxiv]].

8. Ethical Issues

In an attempt to make our world a safer place we have inadvertently infringed on our privacy and our freedom through the use of surveillance cameras and all other ancillary. We equip our children with mobile phones, attach tracking devices to them or make them carry them [[cxxv]] in their bags and soon we might even be implanting them with microchips [[cxxvi]]. This all comes at a price- yet it seems more and more people are willing to pay this price as heinous crimes become common events in a society that should know better. Take the example of 11-year old Danielle Duval who is about to have an active chip (i.e. containing a rechargeable battery) implanted in her. Her mother believes that it is no different to tracking a stolen car, simply that it is being used for another more important application. Mrs Duvall is considering implanting her younger daughter age 7 as well but will wait until the child is a bit older: “so that she fully understands what’s happening” [[cxxvii]]. One could be excused for asking whether Danielle at the age of 11 actually can fully comprehend the implications of the procedure she is about to undergo. It seems that the age of consent would be a more appropriate age.

Warwick has said that an urgent debate is required on this matter (i.e. whether every child should be implanted by law), and whether or not signals from the chips should be emitted on a 24x7 basis or just triggered during emergencies. Warwick holds the position that “we cannot prejudge ethics” [87]. He believes that ethics can only be debated and conclusions reached only after people become aware of the technical possibilities when they have been demonstrated. He admits that ethics may differ between countries and cultures [[cxxviii]]. The main ethical problem related to chip implants seems to be that they are under the skin [70] and cannot just be removed by the user at their convenience. In fact there is nothing to stop anyone from getting multiple implants all over their body rendering some applications useless. Tien of the Electronic Frontier Foundation (EFF) is convinced that if a technology is there to be abused, whether it is chip implants or national ID cards, then it will because that is just human nature [[cxxix]]. Similarly, Kidscape, a charity that is aimed at reducing the incidence of sexual abuse in children believe that implants will not act to curb crime. Kidscape hold the position that rather than giving children a false sense of security because they are implanted with a tracking device that could be tampered with by an offender, they should be educated on the possible dangers. Implanted tracking devices may sound entirely full-proof but deployment of emergency personnel, whether police or ambulance, cannot just magically appear at the scene of a crime in time to stop an offender from committing violence against a hostage.

8.1 The Prospect of International ID Implants

There are numerous arguments for why implanting a chip in a person is outright unconstitutional. But perhaps the under-explored area as Gellman puts it are the legal and social issues of who would have power over the chip and the information gathered by its means [49]. Gellman is correct in his summation of the problem but science has a proven way of going into uncharted territory first, then asking the questions about implications later. ADSX, for instance, have already launched the VeriChip solution. Sullivan, a spokesperson for the company told Salkowski [50]:

“I’m certainly not a believer in the abuse of power,” he offered, suggesting that Congress could always ban export of his company’s device. Of course, he admits he wouldn’t exactly lobby for that law. “I’m a businessman,” he said.

Black [53] makes the observation that the US government might well indeed place constraints on international sales of the VeriChip if it felt it could be used against them by an enemy. Consider the governance issues surrounding GPS technology that has been in operation a lot longer than human RFID implants.

“Good, neutral, or perhaps undesirable outcomes are now possible… Tension arises between some of the civil/commercial applications and the desire to preclude an adversary’s use of GPS. It is extremely difficult (technically, institutionally, politically, and economically) to combine the nonmilitary benefits of the system that require universality of access, ease of use, and low cost with military requirements for denial of the system to adversaries. Practical considerations require civil/commercial applications to have relatively easy access” [[cxxx]].

From a different angle, Rummler [[cxxxi]] points out that the monitoring and tracking of individuals raises serious legal implications regarding the individual’s capacity to maintain their right to freedom. He wrote: “[o]nce implanted with bio-implant electronic devices, humans might become highly dependent on the creators of these devices for their repair, recharge, and maintenance. It could be possible to modify the person technologically… thus placing them under the absolute control of the designers of the technology.” The Food and Drug Administration’s (FDA) Dr. David Feigal has been vocal about the need for such devices as the VeriChip not to take medical applications lightly and that companies wishing to specialize in health-related implants need to be in close consultation with the FDA [[cxxxii], [cxxxiii]]. There is also the possibility that such developments, i.e. regulating chip implants, may ultimately be used against an individual. The Freedom of Information Act for instance, already allows U.S. authorities to access automatic vehicle toll-passes to provide evidence in court [2]; there is nothing to suggest this will not happen with RFID transponder implants as well, despite the myriad of promises made by ADSX.  Professor Gray is adamant that there is no stopping technological evolution no matter how sinister some technologies may appear, and that we need to become accustomed to the fact that new technologies will continually infringe upon the constitution [49].

8.2 Beyond Chip Implants

Luggables, like mobile phones, do create a sense of attachment between the user and the device but the devices are still physically separate; they can accidentally be left behind. Wearable computers on the other hand are a part of the user, they are worn, and they “create an intimate human-computer-symbiosis in which respective strengths combine” [[cxxxiv]]. Mann calls this human-computer-symbiosis, “human interaction” (HI) as opposed to HCI (human-computer interaction).

[W]e prefer not to think of the wearer and the computer with its associated I/O apparatus as separate entities. Instead, we regard the computer as a second brain and its sensory modalities as additional senses, which synthetic synesthesia merges with the wearer’s senses. [[cxxxv]]
Exhibit 1.5     The Process of Transformation

Exhibit 1.5     The Process of Transformation

Human-computer electrification is set to make this bond irrevocable (see exhibit 1.5). Once on that path there is no turning back. If at the present all this seems impossible, a myth, unlikely, a prediction far gone, due to end-user resistance and other similar obstacles facing the industry today, history should teach us otherwise. This year alone, millions of babies will be born into a world where there are companies on the New York Stock Exchange specializing in chip implant devices for humans. “They” will grow up believing that these technologies are not only “normal” but also quite useful, just   like   other   high-tech technologies before them such as the Internet, PCs, smart cards etc. Consider the case of Cynthia Tam, aged two, who is an avid computer user:

“[i]t took a couple of days for her to understand the connection between the mouse in her hand and the cursor on the screen and then she was off… The biggest problem for Cynthia’s parents is how to get her to stop… for Cynthia, the computer is already a part of her environment… Cynthia’s generation will not think twice about buying things on the Internet, just like most people today don’t think twice when paying credit card, or using cash points for withdrawals and deposits” [[cxxxvi]].

But you do not have to be a newborn baby to adapt to technological change. Even grandmothers and grandfathers surf the web these days and send emails as a cheaper alternative to post or telephone [74]. And migrants struggling with a foreign language will even memorize key combinations to withdraw money even if they do not actually fully perceive the actions they are commanding throughout the process. Schiele [[cxxxvii]] believes that our personal habits are shaped by technological change and that over time new technologies that seem only appropriate for technophiles eventually find themselves being used by the average person. “[O]ver time our culture will adjust to incorporate the devices.” Gotterbarn is in agreement [10].

We enthusiastically adopt the latest gadget for one use, but then we start to realize that it gives us power for another use. Then there is the inevitable realization that we have overlooked the way it impacts other people, giving rise to professional and ethical issues.

What is apparent regardless of how far electrophoresis is taken is that the once irreconcilable gap between human and machine is closing (see exhibit 1.6).

Beyond chip implants for tracking there are the possibilities associated with neural prosthetics and the potential to directly link computers to humans [[cxxxviii]]. Warwick is also well aware that one of the major obstacles of cyber-humans are the associated moral issues [[cxxxix], [cxl]]- who gives anyone the right to be conducting complex procedures on a perfectly healthy person, and who will take responsibility for any complications that present themselves? Rummler [131] asks whether it is ethical to be linking computers to humans in the first place and whether or not limitations should be placed on what procedures can be conducted even if they are possible. For instance, could this be considered a violation of human rights? And more to the point what will it mean in the future to call oneself “human”. McGrath [[cxli]] asks “how human”?

As technology fills you up with synthetic parts, at what point do you cease to be fully human? One quarter? One third?... At bottom lies one critical issue for a technological age: are some kinds of knowledge so terrible they simply should not be pursued? If there can be such a thing as a philosophical crisis, this will be it. These questions, says Rushworth Kidder, president of the Institute for Global Ethics in Camden, Maine, are especially vexing because they lie at “the convergence of three domains- technology, politics and ethics- that are so far hardly on speaking terms.

At the point of becoming an electrophorus (i.e. a bearer of electricity), “[y]ou are not just a human linked with technology; you are something different and your values and judgment will change” [[cxlii]]. Some suspect that it will even become possible to alter behavior in people with brain implants [51], whether they will it or not. Maybury [101] believes that “[t]he advent of machine intelligence raises social and ethical issues that may ultimately challenge human existence on earth.”

 

Exhibit 1.6     Marketing Campaigns that Point to the Electrophorus

Exhibit 1.6     Marketing Campaigns that Point to the Electrophorus

Gotterbarn [10] argues precisely that our view of computer technologies generally progresses through several stages:

1) naïve innocence and technological wonder, 2) power and control, and 3) finally, sometimes because of disasters during the second stage, an understanding of the essential relationship between technologies and values.

Bill Joy, the chief technologist of Sun Microsystems, feels a sense of unease about such predictions made by Ray Kurzweil in The Age of Spiritual Machines [138]. Not only because Kurzweil has proven technically competent in the past but because of his ultimate vision for humanity- “a near immortality by becoming one with robotic technology” [[cxliii]]. Joy was severely criticized for being narrow-sighted, even a fundamentalist of sorts, after publishing his paper in Wired, but all he did was dare to ask the questions- ‘do we know what we are doing? Has anyone really carefully thought about this?’ Joy believes [143]:

[w]e are being propelled into this new century with no plan, no control, no brakes. Have we already gone too far down the path to alter course? I don’t believe so, but we aren’t trying yet, and the last chance to assert control- the fail-safe point- is rapidly approaching.

Surely there is a pressing need for ethical dialogue [[cxliv]] on auto-ID innovation and more generally IT&T. If there has ever been a time when engineers have had to act socially responsibly [[cxlv]], it is now as we are at defining crossroads.

The new era of biomedical and genetic research merges the worlds of engineering, computer and information technology with traditional medical research. Some of the most significant and far-reaching discoveries are being made at the interface of these disciplines. [[cxlvi]]

9. Conclusion

The principal objective of this paper was to encourage critical discussion on the exigent topic of human implants in e-business applications by documenting the central social, cultural, religious and ethical issues. The evidence provided indicates that technology-push has been the driving force behind many of the new RFID transponder implant applications instead of market-pull. What is most alarming is the rate of change in technological capabilities without the commensurate response from an informed community involvement or ethical discourse on what these changes actually “mean”, not only for the present but also for the future. It seems that the normal standard now is to introduce a technology, stand back to see its general effects on society, and then act to rectify problems as they might arise. The concluding point of this paper is that the long-term side effects of a technology should be considered at the outset and not after the event. One need only bring to mind the Atomic Bomb and the Chernobyl disaster for what is possible, if not inevitable once a technology is set on its ultimate trajectory [103]. As citizens it is our duty to remain knowledgeable about scientific developments and to discuss the possible ethical implications again and again [10]. In the end we can point the finger at the Mad Scientists [75] but we too must be socially responsible, save we become our own worst enemy [[cxlvii]]. It is certainly a case of caveat emptor, let the buyer beware.

10. References

[1] Cohen, T., The Tattoo, Savvas, Sydney (1994).

[2] Sanchez-Klein, J., “Cyberfuturist plants chip in arm to test human-computer interaction”, CNN Interactive,  http://www.cnn.com/TECH/computing/9808/28/ armchip.idg/index.html, [Accessed 28 August 1998], pp. 1-2 (1998).

[3] Jones, C., “Kevin Warwick: Saviour of humankind?”, BBC News, http://news.bbc.co.uk/2/hi/in_depth/uk/2000/newsmakers/1069029.stm, [Accessed 4 January 2003], pp. 1-4 (2000).

[4] ADSX, “Homepage”, http://www.adsx.com, Applied Digital Solutions, [Accessed 1 March 2004], p. 1 (2004).

[5] ADSX, “VeriChip Corporation”, Applied Digital Solutions, http://www.4verichip.com/, [Accessed 1 April 2004], p. 1 (2004).

[6] Warwick, K., “Professor of Cybernetics, University of Reading”, Kevin Warwick, http://www.kevinwarwick.com, [Accessed 14 November 2002], pp. 1-2 (2002).

[7] Goldman, J., “Meet ‘The Chipsons’: ID chips implanted successfully in Florida family”, ABC News: techtv, http://abcnews.go.com/sections/scitech/ TechTV/techtv_chipfamily020510.html, [Accessed 13 November 2003], pp. 1-2 (2002).

[8] Ramesh, E.M., “Time Enough: consequences of the human microchip implantation”, Franklin Pierce Law Centre, http://www.fplc.edu/risk/vol8/fall/ ramesh.htm, [Accessed 1 March 2004], pp. 1-26 (2004).

[9] Unatin, D., “Progress v. Privacy: the debate over computer chip implants”, JOLT: Notes, http://www.lawtechjournal.com/notes/2002/24_020819_ unatin. php, [Accessed 1 March 2004], pp. 1-3 (2002).

[10] Gotterbarn, D., “Injectable computers: once more into the breach! The life cycle of computer ethics awareness”, inroads- The SIGCSE Bulletin, Vol. 35, No. 4, December, pp. 10-12, (2003).

[11] Covacio, S., “Technological problems associated with the subcutaneous microchips for human identification (SMHId), InSITE-“Where Parallels Intersect, June, pp. 843-853 (2003).

[12] Warwick, K., “I, Cyborg”, 2003 Joint Lecture: The Royal Society of Edinburgh and The Royal Academy of Engineering, The Royal Society of Edinburgh, pp. 1-16 (2003).

[13] Norman, D.A., “Cyborgs”, Communications of the ACM, Vol. 44, No. 3, March, pp. 36-37 (2001).

[14] Bell, G. & Gray, J., “Futuristic forecasts of tools and technologies: digital immortality”, Communications of the ACM, March, Vol. 44, No. 3, pp. 29-31 (2001).

[15] Woodward, J.D., “Biometrics: privacy’s foe or privacy’s friend?”, Proceedings of the IEEE, Vol. 85, No. 9, pp. 1480-1492 (1997).

[16] Rosenberg, R.S., The Social Impact of Computers, Elsevier Academic Press, California (2004).

[17] Lemonick, M.D., “Future tech is now”, Time Australia, 17 July, pp. 44-79 (1995).

[18] McGinity, M., “Body of the technology: It’s just a matter of time before a chip gets under your skin”, Communications of the ACM, 43(9), September, pp. 17-19 (2000).

[19] Stephan, R., “The ultrahuman revolution”, MoneyZone.com, http://www. moneyzone.com/MTM_features3.28.cfm, [Accessed 29 November 2001], pp. 1-3 (2001).

[20] Sheridan, J.G. et al., “Spectators at a geek show: an ethnographic inquiry into wearable computing”, IEEE The Fourth International Symposium on Wearable Computers, pp. 195-196 (2000).

[21] Lukowicz, P., “The wearARM modular low-power computing core”, IEEE Micro, May-June, pp. 16-28 (2001).

[22] DeFouw, G. & Pratt, V., “The matchbox PC: a small wearable platform”, The Third International Symposium on Wearable Computers, pp. 172-175 (1999).

[23] Salonen, P. et al., “A small planar inverted-F antenna for wearable applications”, IEEE Tenth International Conference on Antennas and Propagation, Vol. 1, pp. 82-85 (1997).

[24] Mann S., “Wearable computing: a first step toward personal imaging”, IEEE Computer, February, pp. 25-32 (1997).

[25] Millanvoye, M., “Teflon under my skin”, UNESCO, http://www.unesco. org/courier/2001_07/uk/doss41.htm, [Accessed 29 November 2001], pp. 1-2 (2001).

[26] Furui, S., “Speech recognition technology in the ubiquitous/wearable computing environment”, IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 6, pp. 3735-3738 (2000).

[27] Pickering, C., “Silicon man lives”, Forbes ASAP, http://www.cochrane.org.uk/opinion/interviews/forbes.htm, [Accessed 22 November 2001], pp. 1-2 (1999).

[28] Sydänheimo, L. et al., “Wearable and ubiquitous computer aided service, maintenance and overhaul”, IEEE International Conference on Communications, Vol. 3, pp. 2012-2017 (1999).

[29] Rhodes, B. J. et al., “Wearable computing meets ubiquitous computing: reaping the best of both worlds”, The Third International Symposium on Wearable Computers, pp. 141-149 (1999).

[30] Kaku, M., Visions: how science will revolutionize the 21st century and beyond, Oxford University Press, Oxford (1998).

[31] van Laerhoven, K. & Cakmacki, O., “What shall we teach our pants?”, IEEE The Fourth International Symposium on Wearable Computers, pp. 77-83 (2000).

[32] Kortuem, G. et al., “Context-aware, adaptive wearable computers as remote interfaces to ‘intelligent’ environments”, Second International Symposium on Wearable Computers, pp. 58-65 (1998).

[33] Starner, T., “The challenges of wearable computing: part 2”, IEEE Micro, July-August, pp. 54-67 (2001).

[34] Mills, S. (ed.), Turning Away From Technology: a new vision for the 21st century, Sierra Club Books, San Francisco (1997).

[35] Davies, S., Big Brother: Australia’s growing web of surveillance, Simon and Schuster, Sydney (1992).

[36] Davies, S., Monitor: extinguishing privacy on the information superhighway, PAN, Sydney (1996).

[37] Hibbert, C., “What to do when they ask for your social security number”, in Computerization and Controversy: value conflicts and social choices, (ed.) Rob Kling, Academic Press, New York, pp. 686-696 (1996).

[38] Kusserow, R.P., “The government needs computer matching to root out waste and fraud”, in Computerisation and Controversy: value conflicts and social choices, (ed.) Rob Kling, Academic Press, New York, part 6, section E, pp. 653f (1996).

[39] Privacy Commissioner, Selected Extracts from the Program Protocol Data-Matching Program (Assistance and Tax), Privacy Commission, Sydney (1990).

[40] Jones, D., “UK government launches smart card strategy”, Ctt, Vol. 11, No. 6, February, p. 2 (2000).

[41] Michels, S., “National ID”, Online NewsHour, http://www.pbs.org/ newshour/bb/fedagencies/jan-june02/id_2-26.html, [Accessed 2 September 2001], pp. 1-8 (2002).

[42] Rosenberg, R.S., The Social Impact of Computers, Sydney, Elsevier, pp. 339-405 (2004).

[43] Brin, D., The Transparent Society: will technology force us to choose between privacy and freedom, Perseus Books, Massachusetts (1998).

[44] Branscomb, A. W., Who Owns Information: from privacy to public access, BasicBooks, USA (1994).

[45] Rothfeder, J., “Invasion of privacy”, PC World, Vol. 13, No. 11, pp. 152-162 (1995).

[46] Newton, J. “Reducing ‘plastic’ counterfeiting”, European Convention on Security and Detection, Vol. 408, pp. 198-201 (1995).

[47] Masterson, U.O., “A day with ‘Professor Cyborg’”, MSNBC, http://www.msnbc.com/news/394441.asp, [Accessed 29 November 2001], pp. 1-6 (2000).

[48] Associated Press, “Chip in your shoulder? Family wants info device”, USA Today: Tech, http://www.usatoday.com/life/cyber/tech/2002/04/01/verichip-family.htm, [Accessed 15 October 2002], pp. 1-2 (2002).

[49] Mieszkowski, K., “Put that silicon where the sun don’t shine”, Salon.com, http://www.salon.com/tech/feature/2000/09/07/chips/, Parts 1-3, [Accessed 11 November 2001], pp. 1-3 (2000).

[50] Salkowski, J., “Go track yourself”, StarNet Dispatches, http://dispatches. azstarnet.com/joe/2000/0104-946929954.htm, [Accessed 29 November 2001], pp. 1-4 (2000).

[51] LoBaido, A.C. 2001, “Soldiers with microchips: British troops experiment with implanted, electronic dog tag”, WorldNetDaily.com, http://www.fivedoves. com/letters/oct2001/chrissa102.htm, [Accessed 20 November 2001], pp. 1-2 (2001).

[52] Swissler, M.A., “Microchips to monitor meds”, Wired, http://www.wired. com/news/technology/0,1282,39070,00.html, [Accessed 29 November 2001], pp. 1-3 (2000).

[53] Black, J., “Roll up your sleeve – for a chip implant”, Illuminati Conspiracy, http://www.conspiracyarchive.com/NWO/chip_implant.htm, [Accessed 15 October 2002], pp. 1-6 (2002).

[54] RFID, “Singapore fights SARS with RFID”, RFID Journal, http://216.121.131.129/article/articleprint/446/-1/1/, [Accessed 1 May 2004], pp. 1-2 (2003).

[55] RFID, “Taiwan uses RFID to combat SARS”, RFID Journal, http://216.121.131.129/article/articleprint/520/-1/1/, [Accessed 1 May 2004], pp. 1-2 (2003).

[56] Scheeres, J. “They want their id chips now”, Wired News, http://www.wired.com/news/privacy/0,1848,50187,00.html, [Accessed 15 October 2002], pp. 1-2 (2002).

[57] Wherify, “Frequently Asked Questions”, Wherify Wireless, http://www.wherifywireless.com/faq.asp, [Accessed 15 April 2004], pp. 1-7 (2004).

[58] Scheeres, J., “Kidnapped? GPS to the rescue”, Wired News, http://www.wired.com/news/business/0,1367,50004,00.html, [Accessed 15 October 2002], pp. 1-2 (2002).

[59] McClimans, F., ‘Is that a chip in your shoulder, or are you just happy to see me?’, CNN.com, http://www.cnn.com/TECH/computing/9809/02/chippotent. idg/index.html, [Accessed 22 November 2001], pp. 1-4 (1998).

[60] Scheeres, J., “Politician wants to ‘get chipped’”, Wired News, http://www.wired.com/news/technology/0,1282,50435,00.html, [Accessed 15 October 2002], pp. 1-2 (2002).

[61] Horn, T., “Opinionet contributed commentary”, Opinionet, http://www. opinionet.com/commentary/contributors/ccth/ccth13.htm, [Accessed 29 November 2001], pp. 1-4 (2000).

[62] Levi, P., The Drowned and the Saved, trans. Raymond Rosenthal, Summit Books, London (1988).

[63] Lifton, R.J., The Nazi Doctors: medical killing and the psychology of genocide, Basic Books, New York (1986).

[64] McMurchie, L., “Identifying risks in biometric use”, Computing Canada, Vol. 25, No. 6, p. 11, (1999).

[65] Nairne, D., “Building better people with chips and sensors”, scmp.com, http://special.scmp.com/mobilecomputing/article/FullText_asp_ArticleID-20001009174, [Accessed 29 November 2001], pp. 1-2 (2000).

[66] National Radiological Protection Board, “Understanding radiation: ionizing radiation and how we are exposed to it”, NRPB, http://www.nrpb.org/radiation_ topics/risks/index.htm, [Accessed 1 May 2004], pp. 1-2 (2004).

[67] Australian Communications Authority, Human exposure to radiofrequency electromagnetic energy: information for manufacturers, importers, agents, licensees or operators of radio communications transmitters, Australian regulations, Melbourne (2000).

[68] Salonen, P. et al., “A small planar inverted-F antenna for wearable applications”, IEEE Tenth International Conference on Antennas and Propagation, Vol. 1, pp. 82-85 (1997).

[69] Geers, R. et al., Electronic Identification, Monitoring and Tracking of Animals, CAN International, New York (1997).

[70] Trull, D., “Simple Cyborg”, Parascope, http://www.parascope.com/ articles/slips/fs29_2.htm, [Accessed 20 November 2001], pp. 1-4 (1998).

[71] Witt, S., “Professor Warwick chips in”, Computerworld, 11 January, p. 89 (1999).

[72] Martin, C.D., “The myth of the awesome thinking machine”, Communications of the ACM, 36(4), pp. 120-133 (1993).

[73] Michael, K., “The automatic identification trajectory: from the ENIAC to chip implants”, in Internet Commerce: digital models for business, E. Lawrence et al., John Wiley and Sons, Queensland, pp. 131-134, 136 (2002).

[74] Tapscott, D., Growing up digital: the rise of the net generation, McGraw- Hill, New York (1998).

[75] Walker, I., “Cyborg dreams: Beyond Human”, Background Briefing ABC Radio National, 4 November, pp. 1-15 (2001)

[76] Anonymous, “Will a chip every day keep the doctor away?”, PhysicsWeb, http://physicsweb.org/article/world/14/7/11, [Accessed 29 November 2001], pp. 1-2 (2001).

[77] Goldberg, H., “Building a better mMode”, http://www.mmodemagazine. com/features/bettermmode.asp, mMode Magazine, [Accessed 1 April 2004), pp. 1-4 (2004).

[78] Wilmington, M., “Movie review, ‘Metropolis (Re-release)’”, Metromix.com, http://metromix.chicagotribune.com/search/mmx-17922_lgcy. story, [Accessed 3 May 2004], pp. 1-3 (2004).

[79] McRoy, J., “Science fiction studies”, DePauw University, Vol. 28, No. 3, http://www.depauw.edu/sfs/birs/bir85b.htm, [Accessed 3 May 2004], pp. 1-3 (2001).

[80] Anonymous, “The NET”, MovieWeb, http://movieweb.com/movie/thenet/ index.html, [Accessed 3 May 2004], pp. 1-5 (2001).

[81] King, B., “Robots: It’s an art thing” http://www.wired.com/news/print/ 0,1294,48253,00.html, [Accessed 4 January 2003], pp. 1-2 (2001).

[82] Branwyn, G., “The desire to be wired”, Wired, September/October (1993).

[83] Schirato, T. & Yell, S. Communication & Cultural Literacy: an introduction, Allen and Unwin, NSW (1996).

[84] Dery, M., Escape Velocity: cyberculture at the end of the century, Hodder and Stoughton, London (1996).

[85] Scheeres, J., “New body art: Chip implants”, Wired News, http://www. wired.com/news/culture/0,1284,50769,00.html, [Accessed 15 October 2002], pp. 1-2 (2002).

[86] Tysome, T., “Dance of a cyborg”, The Australian, p. 35 (2001).

[87] Warwick, K., “Frequently asked questions”, Professor Kevin Warwick, http://www2.cyber.rdg.ac.uk/kevinwarwick/FAQ.html, [Accessed 20 November 2001], pp. 1-4 (2001).

[88] Sacleman, H. Computers, System Science, And Evolving Society: the challenge of man-machine digital systems, Wiley, New York (1967).

[89] McLuhan, M., Understanding Media: the extensions of man, The MIT Press, England (1999).

[90] McLuhan, M. & Powers, B.R., The Global Village: transformations in world life and media in the 21st century, Oxford University Press, New York (1989).

[91] McLuhan, E. & Zingrone, F., Essential McLuhan, BasicBooks, USA (1995).

[92] Ellul, J., The Technological Society, Vintage Books, New York (1964).

[93] Toffler, A., Future Shock, Bantam Books, New York (1970).

[94] Gates, B., The Road Ahead, The Penguin Group, New York (1995).

[95] Negroponte, N., Being Digital, Hodder and Stoughton, Australia (1995).

[96] Moravec, H., Mind Children: the future of robot and human intelligence, Harvard University Press, Cambridge (1988).

[97] Moravec, H., Robot: mere machine to transcendent mind, Oxford University Press, Oxford (1999).

[98] Paul, G.S. & Cox, E.D. Beyond Humanity: cyberevolution and future minds, Charles River Media, Massachusetts (1996).

[99] Sorkin, D.L. & McClanahan, J. “Cochlear implant reimbursement cause for concern”, HealthyHearing, http://www.healthyhearing.com/healthyhearing/ newroot/articles/arc_disp.asp?id=147&catid=1055, [Accessed 3 May 2004], pp. 1-4 (2004).

[100] Weber, D.O., “Me, myself, my implants, my micro-processors and I”, Software Development Magazine, http://www.sdmagazine.com/print/ documentID=11149, [Accessed 29 November 2001], pp. 1-6 (2000).

[101] Maybury, M.T., “The mind matters: artificial intelligence and its societal implications”, IEEE Technology and Society Magazine, June/July, pp. 7-15 (1990).

[102] Bijker, W.E. & Law, J. (eds), Shaping Technology/Building Society: studies in sociotechnical change, The MIT Press, Massachusetts (1992).

[103] Pool, R. Beyond Engineering: how society shapes technology, Oxford University Press, New York (1997).

[104] Hristodoulou, M. Hieromonk, “In the last days”, in Geron Paisios, Mount Athos, Greece, (in Greek), pp. 181-192 (1994).

[105] Relfe, M.S., The New Money System, Ministries Inc., Alabama (1982).

[106] Relfe, M.S., When Your Money Fails, League of Prayer, Alabama (1981).

[107] Barker, K. et al. (eds), The NIV Study Bible, Zondervan Publishing House, Michigan, pp. 1939-1940 (1995).

[108] Watkins, T., “WARNING: 666 IS COMING!”, Dial-the-Truth Ministries,  http://www.secis.com/truth [Accessed 1 August 1996], now http://www.av1611. org, pp. 1-6 (1996).

[109] Michael, M.G., The Number of the Beast, 666 (Revelation 13:16-18): Background, Sources and Interpretation, Macquarie University, MA (Hons) Thesis, Sydney, Australia (1998).

[110] Arndt, W.F. & Gingrich, F.W., A Greek-English Lexicon of the New Testament and Other Early Christian Literature, The University of Chicago Press, Chicago, p. 876 (1979).

[111] Roethenbaugh, G., “Simon Davies- Is this the most dangerous man in Europe?”, Biometrics in Human Services, Vol. 2, No. 5, pp. 2-5 (1998).

[112] Decker, S., “Technology raises concerns: Pros and cons of scientific advances weighed as Christians discuss issue”, The Falcon Online Edition,  http://www.thefalcononline.com//story/2270, [Accessed 1 April 2003], pp. 1-3 (2002).

[113] Cook, T.L. The Mark of the New World Order, ASIN, USA (1999).

[114] Newton, C., “U.S. to weigh computer chip implant”, Netscape: Daily News, http://dailynews.netscape.com/mynsnews/story.tmpl?table=n&cat=51180 &id= 200202261956000188605, [Accessed 15 October 2002], pp. 1-2 (2002).

[115] Associated Press, “Chip in your shoulder? Family wants info device”, USA Today: Tech, http://www.usatoday.com/life/cyber/tech/2002/04/01/ verichip-family.htm, [Accessed 15 October 2002], pp. 1-2 (2002).

[116] Michael, M.G., “For it is the number of a man”, Bulletin of Biblical Studies, Vol. 19, January-June, pp. 79-89 (2000).

[117] Michael, M.G., “666 or 616 (Rev 13:18): Arguments for the authentic reading of the Seer's conundrum”, Bulletin of Biblical Studies, Vol. 19, July-December, pp. 77-83 (2000).

[118] Bauckham, R., The Climax of Prophecy: Studies on the Book of Revelation, T & T Clark: Edinburgh, pp. 384-452 (1993).

[119] Horn, T., “Opinionet contributed commentary”, Opinionet, http://www.opinionet.com/commentary/contributors/ccth/ccth13.htm, [Accessed 29 November 2001], pp. 1-4 (2000).

[120] Barnet, R.J. & Cavanagh, J., Global Dreams: imperial corporations and the new world order, Simon and Schuster, New York (1994).

[121] Wilshire, B., The Fine Print, Brian Wilshire, Australia (1992).

[122] Smith, B., Warning, Smith Family Evangelism, New Zealand (1980).

[123] Stahl, W.A., God and the Chip: religion and the culture of technology, EDSR, Canada (1999).

[124] Noble, D.F., The Religion of Technology: the divinity of man and the spirit of invention, Penguin Books, England (1999).

[125] Sensormatic, “SafeKids™”, Sensormatic, http://www.sensormatic.com/ html/safekids/index.htm, [Accessed 3 June 1999], pp. 1-2 (1999).

[126] Raimundo, N., ‘Digital angel or big brother?’, SCU, http://cseserv.engr. scu.edu/StudentWebPages/NRaimundo/ResearchPaper.htm [Accessed 15th December 2002], (2002).

[127] Wilson, J., “Girl to get tracker implant to ease parents’ fears”, The Guardian, http://www.guardian.co.uk/Print/0,3858,4493297,00.html, [Accessed 15 October 2002], pp. 1-2 (2002).

[128] Ermann, M.D. et al. (eds), Computers, Ethics, and Society, Oxford University Press, New York (1997).

[129] Eng, P., “I, Chip? Technology to meld chips into humans draws closer”, ABCNEWS.com, http://abcnews.go.com/sections/scitech/DailyNews/  chipimplant020225.html, [Accessed 15 October 2002], pp. 1-3 (2002).

[130] Pace, S. et al. (eds), The Global Positioning System: assessing national policies, Rand Corporation, New York (1996).

[131] Rummler, D.M., “Societal issues in engineering”, ENGR 300, pp. 1-3 (2001).

[132] Associated Press, “Company gets okay to sell ID-only computer chip implant”, The Detroit News, http://www.detnews.com/2002/technology/0204/ 05/technology-457686.htm, [Accessed 15 October 2002] (2002).

[133] Associated Press, “ID chip ready for implant”, USA Today: Tech, http:// www.usatoday.com/life/cyber/tech/2002/04/04/implant-chip.htm, [Accessed 15 October 2002], pp. 1-2.

[134] Billinghurst, M. & Starner T., “Wearable devices: new ways to manage information”, IEEE Computer, January, Vol. 32, No. 1, pp. 57-64 (1999).

[135] Mann, S., “Wearable computing: toward humanistic intelligence”, IEEE Intelligent Systems, May/June, pp. 10-15 (2001).

[136] Chan, T., “Welcome to the Internet, baby!”, Telecom Asia, p. 38 (2001).

[137] Schiele, B. et al., “Sensory-augmented computing: wearing the museum’s guide”, IEEE Micro, pp. 44-52.

[138] Kurzweil, R., The Age of Spiritual Machines: when computers exceed human intelligence, Penguin Books, New York (1999).

[139] Irwin, A., “Brain implant lets man control computer by thought”, Telegraph.co.uk, 1238, http://www.telegraph.co.uk/et?ac=000118613908976, [Accessed 22 November 2001], pp. 1-3 (1998).

[140] Warwick, K., “Are chip implants getting under your skin?”, Compiler, http://www.synopsys.com/news/pubs/compiler/art3_chipimplan-mar03.html, [Accessed 1 March 2004], pp. 1-5 (2003).

[141] McGrath, P., “Technology: Building better humans”, Newsweek, http:// egweb.mines.edu/eggn482/admin/Technology.htm, [Accessed 29 November], pp. 1-3 (2001).

[142] Anonymous, “Professor Cyborg”, Salon.com, http://www.salon.com/tech/ feature/1999/10/20/cyborg/index1.html, 3 parts, [Accessed 29 November 2001], pp. 1-3 (1999).

[143] Joy, B. “Why the future doesn’t need us”, Wired, 8.04, http://www.wired. com/wired/archive/8.04/joy_pr.html, [Accessed 4 January 2003], pp. 1-19 (2000).

[144] Masey, S. “Can we talk? The need for ethical dialogue”, The IEE, p. 4/1, (1998).

[145] Wenk, E., “The design of technological megasystems: new social responsibilities for engineers”, IEEE, pp. 47-61 (1990).

[146] Boehringer, B., “Benefits of the OHSU/OGI merger”, The Oregon Opportunity: A New Era of Medical Breakthroughs, http://www.ohsu.edu/ about/opportunity/ohsu_ogi.htm, [Accessed 20 November 2001], pp. 1-2 (2001).

[147] Ebert, R., “Enemy of the State”, Ebert on Movies, http://www.suntimes. com/ebert/ebert_reviews/1998/11/112006.html, pp. 1-3 (2001).

 

Biographical Note

Dr Katina Michael is a lecturer in Information Technology at the University of Wollongong in Australia. In 1996 she completed her Bachelor of Information Technology degree with a co-operative scholarship from the University of Technology, Sydney (UTS) and in 2003 she was awarded her Doctor of Philosophy with the thesis “The Auto-ID Trajectory” from the University of Wollongong. She has an industrial background in telecommunications and has held positions as a systems analyst with United Technologies and Andersen Consulting. Most of her work experience was acquired as a senior network and business planner with Nortel Networks (1996-2001). In this capacity she consulted for Asia’s largest telecommunication operators and service providers. Katina now teaches and researches in eBusiness and her main academic interests are in the areas of automatic identification devices, third generation wireless applications, geographic information systems, and technology forecasting.

Dr M.G. Michael is a church historian and New Testament scholar. He has spoken at numerous international conferences and has written two highly regarded dissertations on the Book of Revelation. His specialist interests are in apocalypticism, millennial studies, and Orthodox mysticism. He has completed a Doctor of Philosophy at the Australian Catholic University, a Master of Arts (Honours) at Macquarie University, a Master of Theology and Bachelor of Arts at Sydney University and a Bachelor of Theology at the Sydney College of Divinity.