Surveillance, Social Networks, and Suicide

Saint Augustine's "Confessions"

Saint Augustine of Hippo (354–430 CE) [1] one of the most revered doctors of the ecclesia catholica, might not have been so highly esteemed had he flourished centuries afterwards in a world of uberveillance [2]. One of the unique aspects of Augustine's life that endeared him to the community of the faithful, both past and present, was his rising up from the “fornications” [3] and the “delight in thievery” [4] to become a paradigm for both the eastern and western churches of the penitent who becomes a saint. But would the celebrated bishop and author of The City of God have risen to such prominence and reverence had his early and formative life been chronicled on Facebook and “serialized” on YouTube? Would Augustine's long and grueling years of penitence and good works have been recognized? That we have his stylized and erudite Confessions on paper is another matter altogether; as to its impact, the written record cannot be compared to capturing someone in the act on closed circuit television (CCTV). The audio-visual evidence is there forever to be rerun at whim by those who have access. And what of the multitude of other canonized “sinners” who in their own time and private space might not only mature by engaging with their humanity, indeed with their flaws and weaknesses, but also aspire to sainthood through repentance. If these “lives of the saints” were rerun before us, would we view such consecrated men and women in the same way? Where context is lacking or missing, then all interpretation of content, however compelling to the contrary, must be viewed with a high degree of suspicion.

Even in the political and civil rights arena, for example, had the private lives of colossal and “untouchable” figures such as John F. Kennedy and Martin Luther King been subjected to never-ending uberveillance, how might that not only have affected the biography of these two men, but changed the course of history itself? Moreover, how would knowledge of such bio-intrusive surveillance altered both Kennedy's and King's decision-making processes and life habits? We know for instance, particularly from the seminal study of M.F. Keen, that the surveillance of prominent sociologists in the United States played a role in shaping the American sociological tradition. Certainly, J. Edgar Hoover's FBI [5] might have kept a detailed account of the supposed meanderings and subversions of its “suspects,” but these records whether true or false were not universally accessible and limited given the state of information and communication technology at the time [6]. And what of the private lives of popes and patriarchs, kings and queens, great philanthropists, and other exalted figures, how might they have stood up to the nowadays literal “fly on the wall” shadowing [7]?

The incongruity behind traditional surveillance technologies (including wholesale surveillance and “dataveillance”) is that, generally, individuals of power and influence are not subjected to the extreme and exaggerated types of surveillance techniques designed and planned for everyone else. This concept applies, except of course to occasions of blackmail and industrial espionage, for example, when the powerful and influential make use of whatever apparatus is at their disposal to spy on and turn against their own. It is not our blanket assertion that all influential and powerful people must necessarily be corrupt. It is fundamentally a matter of control revolving around authority, access, and opportunity. We return then, to the perennial question of who will guard the guards themselves: Quis custodiet ipsos custodes?

Even uniquely enlightened persons such as Siddhartha Gautama and Jesus of Nazareth needed private space not only to engage inwardly and to reflect on their respective missions, but also to do discrete battle with their respective “temptations.” Uberveillance makes private space inch-by-inch obsolete [8]. Private space is that location that we all, saint and sinner alike, need – to make our mistakes in secret, to mature into wisdom, and to discover what we are and are not capable of. In losing large chunks of our privacy we are also forfeiting a critical component of our personal identity, which for a substantial group of philosophers, following on from John Locke, is “the identity of consciousness” [9]. There is, then, the potential for personality disorders to develop, particularly anxiety disorders or phobic neuroses.

The unbridled rush and push to create the transparent society, as David Brin [10] very well described it, has social implications that are largely ignored, or at best marginalized. The social implications of information security measures that are connected to never-ending surveillance or indeed to other network applications have serious and often irreversible psychological consequences of which only a few can be cited here: increased cases of mental illness (new forms of obsessive compulsive disorder and paranoia); a rise in related suicides; decreased levels of trust (at all spheres of relationships); and the impossibility of a “fresh start.” The traditionally received idea of the unconditional absolution of sin [11] in the secrecy of the confessional already does not exist in the world of some religious communities; believers are encouraged to log on and to “confess” online [12], [13]. These types of social networks are especially dangerous for individuals already battling mental illness, and who might afterwards deeply regret having uploaded imaginary or real discretions for everyone to read.

Would the celebrated bishop and author of The City of God have risen to such prominence and reverence had his early and formative life been chronicled on Facebook and “serialized” on YouTube?

The author of a noteworthy article published in Newsweek [14], commenting on the high-profile suicides of two internationally recognized digital technologists, Theresa Duncan and Jeremy Blake, put it well when he surmised “for some, technology and mental illness have long been thought to exist in a kind of dark symbiosis.” The startling suicides first of Duncan and soon after that of her partner Blake, for whom “the very technologies that had infused their work and elevated their lives became tools to reinforce destructive delusions,” are a significant, albeit sad reminder that even those heavily involved in new technologies are not immune from delusional and paranoid torment, whether based on fact or not.

And that is precisely the point: with covert shadowing you can never be completely sure that your paranoia is groundless. Long-term research at a clinical level remains to be conducted on the subject of never-ending surveillance and mental illness. There is some evidence to suggest that a similar paranoia played at least some part in another shocking suicide, that of the Chinese American novelist and journalist Iris Chang [15], the author of The Rape of Nanking.

Iris Chang promoting her book "The Rape of Nanking". In Wikipedia we read: "  It was later discovered that she had left behind three  suicide notes  each dated November 8, 2004. "Statement of Iris Chang" stated:   I promise to get up and get out of the house every morning. I will stop by to visit my parents then go for a long walk. I will follow the doctor's orders for medications. I promise not to hurt myself. I promise not to visit Web sites that talk about suicide. [11]    The next note was a draft of the third:   When you believe you have a future, you think in terms of generations and years. When you do not, you live not just by the day — but by the minute. It is far better that you remember me as I was—in my heyday as a best-selling author—than the wild-eyed wreck who returned from Louisville. ... Each breath is becoming difficult for me to take—the anxiety can be compared to drowning in an open sea. I know that my actions will transfer some of this pain to others, indeed those who love me the most. Please forgive me. [13]    The third note included:   There are aspects of my experience in Louisville that I will never understand. Deep down I suspect that you may have more answers about this than I do. I can never shake my belief that I was being recruited, and later persecuted, by forces more powerful than I could have imagined. Whether it was the  CIA  or some other organization I will never know. As long as I am alive, these forces will never stop hounding me.    Days before I left for Louisville I had a deep foreboding about my safety. I sensed suddenly threats to my own life: an eerie feeling that I was being followed in the streets, the white van parked outside my house, damaged mail arriving at my P.O. Box. I believe my detention at Norton Hospital was the government's attempt to discredit me.

Iris Chang promoting her book "The Rape of Nanking". In Wikipedia we read: "

It was later discovered that she had left behind three suicide notes each dated November 8, 2004. "Statement of Iris Chang" stated:

I promise to get up and get out of the house every morning. I will stop by to visit my parents then go for a long walk. I will follow the doctor's orders for medications. I promise not to hurt myself. I promise not to visit Web sites that talk about suicide.[11]

The next note was a draft of the third:

When you believe you have a future, you think in terms of generations and years. When you do not, you live not just by the day — but by the minute. It is far better that you remember me as I was—in my heyday as a best-selling author—than the wild-eyed wreck who returned from Louisville. ... Each breath is becoming difficult for me to take—the anxiety can be compared to drowning in an open sea. I know that my actions will transfer some of this pain to others, indeed those who love me the most. Please forgive me.[13]

The third note included:

There are aspects of my experience in Louisville that I will never understand. Deep down I suspect that you may have more answers about this than I do. I can never shake my belief that I was being recruited, and later persecuted, by forces more powerful than I could have imagined. Whether it was the CIA or some other organization I will never know. As long as I am alive, these forces will never stop hounding me.

Days before I left for Louisville I had a deep foreboding about my safety. I sensed suddenly threats to my own life: an eerie feeling that I was being followed in the streets, the white van parked outside my house, damaged mail arriving at my P.O. Box. I believe my detention at Norton Hospital was the government's attempt to discredit me.

The application of technology is rarely unbiased. Once a technique [16] is set in motion and diffused into our society it progressively becomes irreversible, particularly given the key component of interoperability and the vast amounts of capital invested in twenty-first century machinery. However, our comprehension of this hi-tech diffusion is not on commensurate levels. Cross-disciplinary discourse, public debate, and legislation lag far behind the establishment of the infrastructure and application of the technology. In simple terms, this lag is the “too much change in too short a period of time,” which Alvin Toffler famously referred to as “Future Shock” [17].

The situation is, unfortunately, reminiscent of that time in Alamogordo, New Mexico, in 1945, when some of those engaged in the Manhattan Project, including one of the group's top physicists, the Nobel laureate Enrico Fermi, were taking side bets on the eve of the test on whether they would “ignite the atmosphere” once the atomic bomb was tested [18]. But the “fallout” from uberveillance is distributed, and it will initially, at least, be invisible to all except the approved operators of the data vacuum. The setting and foreboding of notable dystopian novels, which warn of “dangerous and alienating future societies” – Yevgeny Zamyatin's We (1921), Aldous Huxley's Brave New World (1932), Ayn Rand's Anthem (1938), George Orwell's 1984 (1949), Ray Bradbury's Fahrenheit 451 (1953) – where “dissent is bad” and the deified State “knows all” is being gradually realized. This is especially worrying, for as Noam Chomsky and others point out, we are concurrently witnessing a “growing democratic deficit” [19], [20].

Great strides are also being made in the field of biomedical engineering in the application of engineering principles and techniques to the medical field [21]. New technologies will heal and give hope to many who are suffering from life-debilitating and life-threatening diseases. The broken will walk again. The blind will see. The deaf will hear. Even bionic tongues are on the drawing board. Hearts and kidneys and other organs will be built anew. The fundamental point is that society at large is able to distinguish between positive and negative applications of technological advancements before we diffuse and integrate such innovations into our day-to-day existence.

Nanotechnology, which is behind many of these marvelous medical wonders, will interconnect with the surveillance field and quite literally make the notion of “privacy” – that is, revealing ourselves selectively – an artifact. We must do whatever is in our lawful power to check, mitigate, and to legislate against the unwarranted and abusive use of uber-intrusive surveillance applications. We are talking about applications with such incredible capabilities that will potentially have the power to dehumanize us and reach into the secret layers of our humanity. These are not unruly exaggerations when we consider that wireless sensors and motes, body area networks (BANs), and brain-computer interfaces (BCIs) are already established technologies and that the era of mind control, particularly through pioneering advancements in brain-scanning technology, is getting steadily closer.

The incongruity behind traditional surveillance technologies is that, generally, individuals of power and influence are not subjected to the extreme and exaggerated types of surveillance techniques designed and planned for everyone else.

The argument most often heard in the public domain is “if you have nothing to hide, why worry?” There are, however, at least three problems with this popular mantra. First, freedom implies not only being “free of chains” in the practical sense, to be permitted to go about one's daily business freely and without undue constraint, but nowadays also without your every move being tracked, monitored, and recorded.

Second, there is a metaphysical freedom connected to trust, which also implies to be able to dream, to think, and to believe without outside coercion.

And finally, whether we care to admit it or not, we all have something to hide. Disruption of any of these freedoms or rights would affect our decision-making processes and contribute to unhealthy personality development where what we “want” to do (or engage in) becomes what we think we must do (and theatrically engage in).

To artificially build a personality or to hold on to a set system of synthetically engineered beliefs is to deconstruct the human entity to the point where both initiative and creativity (two key components of a healthy individual) are increasingly diminished, and ultimately eradicated. Humancentric implants for surveillance will alter the “inner man” as much as the externals of technological innovation will transform the “outer man.” There are those who would argue that the body is obsolete and should be fused with machines; there are others who would support mind and identity downloading. In the context of such futuristic scenarios, Andrew Ross has aptly spoken of the “technocolonization of the body” [22]. Others on the cutting edge of the digital world are using technology in ways supposedly never intended by the manufacturers.

If the elements to this discussion that might point to the potential mushrooming of new totalitarian regimes seem paradoxical – after all we are living and reveling in a postmodern and liberal society where the individual cult on a mass scale is idolized and thriving – then we should stand back for a moment and reconsider the emerging picture. Two prominent features of the murderous regimes of Stalin and Hitler were the obsession with state secrecy and the detailed collection of all sorts of evidence documented in scrupulous registers [23]. Related to this collection of information was the well-known and beastly numbering of minorities, prisoners, and political dissidents. In our time, privacy experts such as David Lyon are warning, this type of “social sorting” is becoming evidenced once more [24]. Where are we heading today? In response, already in the United States a number of states (including North Dakota and Wisconsin) have passed anti-chipping bills banning the forced implantation of RFID tags or transponders into people [25].

In 1902 Georges Méliès' short science-fiction film A Trip to the Moon (Le Voyage dans la Lune)spawned the fantastic tradition of putting celluloid form onto the predictive word. More recently representative of this tradition is James Bond in Casino Royale (2006). In this movie, Bond becomes a “marked” man, chipped in his left arm, just above the wrist by his government minders. “So you can keep an eye on me?” the famous spy sarcastically rejoins. The chip is not only for identification purposes but has multiple functions and applications, including the ability to act as a global positioning system (GPS) receiver for chronicling his every move. Later in the film when Bond is captured by his arch-nemesis, the banker Le Chiffre, he will have the microchip, which looks more like a miniature spark plug, cut out of his arm with a blade. These kinds of scenarios are no longer the exclusive domain of the novelist, the conspiracy theorist, the religious apocalypticist, or the intellectual property of the tech-visionary. We have the ability and potential to upgrade these information gathering mechanisms to unprecedented and sci-fi proportions.

Unique lifetime identifiers are more touted than ever before by both the private and public sectors as they have become increasingly synonymous with tax file and social security numbers. The supposed benefits of this permanent cradle-to-grave identification are energetically broadcast at various national and international forums, and especially in the contexts of white collar crime and national security. We are living in times in which commercial innovations will possibly match the internal complexity of the neuron with the help of the appositely called “labs-on-chips.” Writers dealing with these subjects have been speaking less of future shock and more along the lines of hyper-future shock. The key question, so far as identification and information-gathering technology is concerned, is: How are we as a concerned and informed community going to curb and regulate the broad dispersal and depth-charged reaches of surveillance? And how are we going to do this without denying the many positive and desirable applications of the infrastructures that underlie these technologies, particularly in the domain of healing the sick and the injured?

A great deal of this discussion should revolve around the related ethics of emerging technologies, and as we have noted, this discourse is especially critical when we consider the “unintentional” and hidden consequences of innovation. However, one of the methodological weaknesses in this global debate is the direct focus by some of the interlocutors on meta-ethics alone. What we must understand, if we are to make any practical progress in our negotiations, is that this subject must first be approached from the perspective of normative and applied ethics. The lines of distinction between all three of these approaches will at times remain unclear and even merge, but there are some litmus tests (human rights for example) for determining the morality and the ultimate price of our decisions.

Readers might well be asking what technology has to do with some of the metaphysical issues that we are raising here. Perhaps it would be sensible to periodically remind ourselves, as a recent discerning researcher also has pointed out [26], that two of our greatest thinkers, Plato and Aristotle, both warned of the inherent dangers of glorifying techne (art, skill). Techne should be subject to “reason and law”. Furthermore, Plato and Aristotle argued that techne represents “imperfect human imitation of nature.” The pertinent question in this instance might be why have modern societies gradually moved away from asking or seeking out these metaphysical connections. Such general apathy, with a few honorable exceptions, towards a philosophical critique of technology can probably be traced to a defensive response of western economic tradition to Karl Marx's “critique of Victorian progress.”

In relation to surveillance and to ubiquitous location determination technologies, we are at a critical junction; some might well argue that we have long ago decided which road to travel. Maybe these commenters are right. Perhaps there is no longer a place for trusty wisdom in our world. Just the same, full-scale uberveillance has not yet arrived. We must moderate the negative fallout of science and control technology and, as Jacques Ellul [16] would say, “transcend” it: lest its control of us becomes non-negotiable and we ourselves become the frogs in the slow warming water.

The insightful and expertly considered papers that follow were presented at the IEEE-SSIT International Symposium on Technology and Society (ISTAS) 2010, in Wollongong, Australia. In one way or another each of the writers directly investigate issues related to both the technological and social implication spheres broached in this paper. Though their approach or methodology might differ in some evident places, they all agree that the rapid pace of the development and application of new surveillance techniques without due diligence and involvement of the scientific and public communities at large, has built-in potential of a great disaster, in terms of societal loss of privacy, erosion of freedoms, and disintegration of trust.


Excerpts of this article were originally published in Quadrant magazine [27] in 2009. Quadrant is Australia's leading intellectual journal of ideas, literature, poetry, and historical and political debate.


Special issues and sections, Social network services, History, Technological innovation, Surveillance

Citation: MG Michael, Katina Michael, 2011, IEEE Technology and Society Magazine, Vol. 30, No. 3, Fall, 2011, pp. 13-17, DOI: 10.1109/MTS.2011.942312

Social-technical issues facing humancentric RFID implantees

Social-technical issues facing the humancentric RFID implantee sub-culture through the eyes of Amal Graafstra


Radio-frequency identification (RFID) tags and transponders have traditionally been used to identify domesticated animals so that they can be reunited with their owners in the event that they stray. In the late 1990s, industry started to investigate the benefits of using RFID to identifying non-living things throughout the supply chain toward new efficiencies in business operations. Not long after, people began to consider the possibilities of getting RFID tag or transponder implants for themselves. Mr Amal Graafstra of the United States is one of the first, and probably most well-known ‘do it yourselfer’ (DIY) implantees, who enjoys building customized projects which enable him to interact with his private social living space. Since 2005, hundreds of people have embarked on a mission to interact with their mobile phones, their cars, and their house via a chip implant, providing personalized settings for their own ultimate convenience. This paper presents some of the socio-technical issues facing the RFID implantee sub-culture, namely health and safety, privacy, security, regulation, and societal perceptions. The paper concludes with a list of recommendations related to implantables for hobbyists.

Section 1. Introduction

While some cultures embrace the practice of decorating the human body with tattoos and brands, others still perform the age-old art of scarification [1]. Of greater currency today however is the act of body piercing using a plethora of metallic materials, including titanium. Some have even opted to modify the body in outward appearance by using large subdermal or transdermal implants on their heads and forearms [2]. But beyond the purely cosmetic body modifications that some subcultures engage in [3], there are now techno-hobbyists who are transforming the manner in which they interact with their personal social living space through the use of functional high-tech devices known as radio-frequency identification (RFID) tags and transponders.

On the 22nd of March 2005, Mr Amal Graafstra was implanted with his first radio-frequency identification tag [4]. Anecdotal evidence from other do-it-yourselfer implantees agree that Graafstra has been a pioneer in this field, doing things “first” and also “better” than most other implantees meddling in the high-tech art. In the Beginning of 2006 Graafstra even published a book about the applications he had built [5]. Other high profile implantees [6], some of whom preceded Graafstra, include: Kevin Warwick (University of Reading academic) [7], Scott Silverman (CEO of VeriChip Corporation) [8], Rafael Macedo de la Concha (Mexico's Attorney General) [9], Dr. John Halamka (Harvard Medical School's CIO) [10], Gary Retherford (employee at [11], Mikey Sklar (a UNIX engineer) [12], Jonathan Oxer (a LINUX guru) [13], and Meghan Trainor (doctoral student and artist) [14]. This paper however is not concerned with professional “research-oriented” RFID implantees, such as Kevin Warwick, nor with consumers/customers who have been implanted with commercially available Veri Chip technology, nor with individuals who have used RFID for their artistic performances, such as Eduardo Kac [15]. Rather, this paper is concerned with understanding do it yourselfer (DIY) implantees who are usually technically-savvy citizens and are predominantly interested in novel convenience-oriented solutions. This paper focuses on the challenging socio-technical issues and questions that DIY implantees are faced with, related to health and safety, privacy, security, regulation and societal perceptions.

Section 2. Literature Review

A number of academic articles and book chapters have been published on the life and works of Amal Graafstra, including his own full-length book titled RFID Toys [5]. Graafstra featured in his own IEEE Spectrum article in 2007 [16] and several other academic works about him have been written between 2008 and 2009 [17], [18]. He has also figured in hundreds of popular stories in all forms of media-print, radio and television that have received worldwide coverage, e.g. [19], [20], [21], [22]. Most recently Fox News wrote about him [23] and the Discovery Channel interviewed him. While anyone in Graafstra's position would have probably commercialized their ideas by now, Graafstra remains content in pursuing things that are ‘fun’ rather than things which ‘make money,’ although he admittedly does have an entrepreneurial streak about him. Despite the attention, Graafstra remains level-headed, and it is clear upon speaking with him, that he is more about innovation than he is about becoming famous.

Section 3. Methodology

This paper takes on a non-traditional ICT methodological form in that it is written in two voices; Part A is written in the first person voice of Amal Graafstra where he describes events as a participant and Part B is written in the third person voice where Michael and Michael are relating events about Graafstra, and Graafstra is relating events about others. In 2007, Michael and Michael embarked on a full-length interview with Graafstra [24]. Some two years after the interview was conducted, the interviewers requested that Graafstra reflect on his own ideas and commentary as stated in the original interview transcript [25], and make amendments as he saw fit. Time is a very important element when one considers new radical technologies and applications, especially those that seem to evoke a great deal of interdisciplinary debate. Take the launch of the ENIAC in 1948 for instance, and the misconceptions that ensued [26], although few could have possibly predicted that such awesome machinery would find its way into humans.

In Part A, Graafstra’ s story is depicted “uncut”, and Michael and Michael do not interrupt the flow or stream of ideas but can be credited with evoking responses to questions that Graafstra is seldom asked. The usual media hype disappointingly focuses on whether Graafstra is the ‘devil’ and falls short of those all important philosophical questions about the future trajectory of technology. K. Michael has a background in information and communication technology (ICT) and law, while M.G. Michael has qualifications in philosophy, history and theology and has written on topics related to bioethics and the misuse of new technologies by society. The rich combination of backgrounds and experiences has brought about an interdisciplinary discussion between the three authors in Part B. It does not mean that the authors agree on all points, but new research should not necessarily bring about agreement, but debate toward further discussion. In some sense, this is what the IEEE ISTASIO Conference is about, respecting diverse opinions and looking at new technologies in an interdisciplinary manner that may help to shed light on future developments and how society is to absorb them.

3.1. Case Study: Amal Graafstra

According to Yin (1984, p. 23) a case study “investigates a contemporary phenomenon within its real-life context”. The case study in this paper is of a human subject, Mr Amal Graafstra. Graafstra can be considered a participant-researcher in this study while Michael and Michael act as independent observers of the subject within his real-life context.

3.1.1. Background

Amal Graafstra is the Director of Information Technology for OutBack Power Systems. He is the owner of several technology and mobile communications companies. Amal loves thinking up interesting ways to combine and apply various technologies in his daily life. A self-starter, Amal dropped out of community college and started his first company at the age of seventeen. The company was called The Guild, and it provided dial-up Internet access to customers, while small set-ups were still feasible.

Some years later, Amal started his second company Morpheus, which specialized in web hosting and web development. For some time the company did well, but as cheaper hosting services became available, it became more and more difficult to compete in the market. Amal then decided to rebuild Morpheus by supplying managed computing services to the medical industry. In parallel, Amal did some work for WireCutter, a wireless mobile messaging company that were involved in creating mobile marketing campaigns for various radio stations, sending SMS text messages to mobile phones. Graafstra decided to pour his heart and soul into the company he called txtGroups but this too was unable to make ends meet, and soon Twitter rapidly overtook txtGroups as a social text platform. His most recent employment is as the head of an information technology (IT) department where he enjoys creating novel and innovative solutions that enable the business to grow.

3.2. Interview

The interview conducted in 2007 between Graafstra (the subject) and K. Michael (the interviewer) was semistructured and contained 25 questions. The main themes addressed included:

  • Background (upbringing, schooling, qualifications, employment, age and place of residence)

  • Adoption of technology habits, value proposition for RFID implants, and prospects of commercialising intellectual property around humancentric chip implants

  • Motivations for going with an implantable technology as opposed to wearable or luggable device

  • Self-perceptions, whether he is a hobbyist or entrepreneur and what words, terms or phrases he uses to refer to himself (i.e. cyborg versus electrophorus)

  • Thoughts on implantation, who was to conduct the procedure, any barriers or challenges to overcome, and whether or not he had to ask permission to get the implant

  • Feelings on the actual implant process, how it made him feel, whether it was painful or painless and how he dealt with the aftermath of the implantation

  • Attitudes and perceptions towards the application of microchip implants in humans and ethical issues, discussed in terms of specific scenarios and stakeholders

  • Values on mandatory, voluntary, commercial and noncommercial and government-mandated humancentric applications pertaining to issues of consent, opting in/out

  • Views on the location of implantation, the type of tag that should be used, the durability of the tag, and its potential functionality

  • Experiences with Christians or civil libertarians who oppose his use of RFID and his counter-arguments to such notions as the fulfillment of prophecy/“mark of the beast”

  • Personal philosophical and spiritual perspectives

  • Knowledge on the prospect of RFID implant viruses spreading, relationship impacts, potential health risks and security breaches, and other general concerns.

3.3. Ethnography and Participant Observation

Graafstra was asked by Michael and Michael to write a reflection on the original transcript, in actual fact to take on the role of a participant observer. This reflection was integrated into the original transcript, forming Part A of this paper. The reflection remains ‘untouched’ save for changes in formatting and expression. These are the raw thoughts of Amal Graafstra, captured in an ethnographic style [27]: “[i]t is a distinctive feature of social research that the ‘objects’ studied are in fact ‘subjects’ … unlike physical objects or animals, they produce accounts of themselves and their worlds.” Michael and Michael have added relevant bibliographic sources to Part A, and in Part B the content from the original interview conducted with Graafstra is qualitatively analyzed to draw out anthropological and sociological orientations. It is here where the third person voice is used by the authors but where also, events related to Graafstra himself, are cited through direct quotation.

Part A-Participant Observation

In Part A, Amal Graafstra tells his DIY tagger story as a participant observer. He is both the object and subject of his narrative. Graafstra takes us on a tour of where and how it all began-his early interest in computing, in what he calls fun “projects”, and finally what led him to get an RFID tag implanted into his left hand in 2005. Graafstra then takes us on a journey of how he acquired his implant, and how it makes him feel to be a bearer of beneath-the-skin technology. He dedicates a great deal of space discussing health and safety issues relevant to RFID implants and concludes by emphasizing the importance for DIYers to take personal responsibility for their actions.

Section 4. In the Beginning…

Technology has always been an interest of mine. From a very early age I was doing what lots of other inquisitive toddlers were doing … tearing things apart out of curiosity and not being able to put them back together. I was intrigued with seemingly magical things. Wood blocks can only hold one's interest for so long. But a record player or a telephone, those things just held some kind of mystery that needed exploration.

It was not until third grade however, where two very unlikely set of circumstances occurred which introduced me to the boundless potential the world of computers had to offer. I had the privilege of going to a country school. It was literally nestled in a forest, the trees of which we would build forts in during recess. It was very small with only four rooms, one for each grade. Oddly enough, the third grade classroom had a PET computer in it - the only one in the entire school. It had no disk or cassette tape storage and no operating system, just a PET version of BASIC in read only memory (ROM). For the greater part, it sat unused in the corner, a simple and momentary curiosity for most… but not to me. I turned it on and got a simple flashing cursor. What could it mean? What does it want me to type? The mystery was just too great to resist, but without any book or instruction manual, or anyone who knew anything about it at the entire school, I did not get far at all and started to lose interest.

Luckily, that year the school started a new program called Reading Is Fundamental (R.I.F.), where each student was allowed to pick out and keep a free book twice a year. I loved choose-your-own-adventure (CYOA) books, and started picking through the piles to find all the CYOA books available. I noticed there were two books in my stack of potential keepers that said “Computer Programs” on the cover. As I thumbed through those two books I saw there was “programming code” for IBM and Apple II computers, and I wondered if the PET would understand any of it. I picked one out and brought it back to the classroom, and that is when the fun began. If either the IBM or Apple code had worked perfectly “as-is”, it may not have captured my imagination. The fact was, I had to ask for a PET programming book from the teacher, who did manage to track one down. With it, I could cross reference the code in the CYOA book with the PET BASIC book to make the code actually work. By the end of third grade, I was obsessed with the notion I could use a special language to tell the computer exactly what to do and it would do it. I felt like anything was possible! I immediately started begging my parents to buy a computer.

4.1. Technology and Having Fun

There is something special about the latest gadget that comes out or the next release of a fondly regarded software application. It is more than just being able to get a greater number of tasks done; it is also about exploring new possibilities. The creativity one can express through building solutions that work well and people use offers a sense of accomplishment and even pride. That building process might turn out to require creating an entirely new technology of some sort, but for most that process is about extending existing technologies in some way.

Typically, extending a technology is done through standardized channels such as software components, libraries, software development kits (SDKs), and application programming interfaces (APls). In the hardware realm one uses integrated circuits (ICs) with integrated functions, or entire original equipment manufacturer (OEM) hardware modules designed to be integrated into products. What I really love to do however is take an existing product and enhance it, sometimes using methods outside the typical channels. Some people might call that “hacking” but to me it is more about getting into the nuts and bolts of a product and making it do what you want it to do.

For example, I wanted to change out the deadbolt in the front door of my home to work without a key. I purchased an electronic deadbolt that worked with a key or by entering a PIN code by keypad. That was fine for a couple days, but the first time I had a handful of groceries and tried to enter the PIN code, I knew I wanted more. I wanted the deadbolt to unlock faster, without a key and without having to enter a PIN code. I just wanted it to know it was me and let me in, even if I had a handful of groceries. I ended up enhancing that electronic deadbolt to also accept RFID tags as a form of authentication. Later I expanded this idea further to allow a PC to log entries, allow me to set alerts, and even allow me to use other forms of authentication like email and text messages to unlock the door (great for letting neighbors in to check on your pets while you are away). There is no way I would be able to find a residential deadbolt that could do all that, let alone pay less than I did to build it myself.

4.2. Hobbyist or Entrepreneur?

I definitely have an entrepreneurial streak in me. I have started several service-based technology businesses and essentially worked for myself for 15 of the last 17 years or so. When it comes to RFID however, it's mostly just a hobby. I've done some consulting here and there, but when everyday people hear about my implants and the little projects I have built, they tend to ask me if I have any patents and/or plan to market some of these ideas.

The truth is most people have no idea what constitutes a good idea versus a patentable idea versus a marketable idea, or the amount of hard work and risk it takes to bring that little idea all the way to a market successfully. I have not had a good enough idea or met the right people yet with the business experience who could really take these things as far as they would need to go to be successful. Currently my now out-of-print niche market book RFID Toys has been the only commercial venture I have undertaken with regard to RFID, and for the time I have put into it I have basically made around $0.75 USD per hour. Not to mention the whole process was more stressful than it was fun. It seems to be a universal law that states “when you turn a fun hobby into a job, it usually stops being fun”.

So at this point I am much more content with running my little RFID forum, answering people's questions as best I can, helping to solve problems, and putting out some good quality examples others can use to get a basic understanding of hobbyist RFID.

Section 5. Getting the RFID Tag Implant

5.1. The Idea

When I think back to when I first heard about RFID implants, I was very young, perhaps seven or eight years old. I remember my mother telling me how pets were getting these new computer chips and that she did not think it was right. She, and basically everyone I grew up around, thought these things were evil and they would end up controlling humanity via satellite. I remember trodding around in the back yard contemplating the end of civilization as I knew it because of these “horrible devices”. I did not doubt that point of view or those technological misconceptions for quite some time.

The thought of RFID implantation did not resurface until years later when I was faced with the decision of whether or not to implant my own pets with a “tracking chip” (a term still used by vets which does not help dislodge ever-prevalent misconceptions about RFID implantation). By then though I was much more sensible about my approach to technology, and I thoroughly annoyed the veterinarian by asking a ton of technical questions he could not answer. After doing more research (without the aid of a content rich Internet in the early 90s) and really looking into how it worked, I had my pets implanted and I came away with a much better understanding of what the technology could and could not do.

Over a decade later, in March 2005, I found myself moving heavy equipment in and out of my office almost every day. My office door had one of those latches that locked every time it closed, and I really hated having to fish around for my keys all the time. That got me thinking about how archaic the idea of a standard metal key really was. A key is nothing more than a hunk of metal, cut with a certain pattern that identifies me as “authorized”. The typical key and lock system is also lock-centric, meaning the lock is the unique bit and each key that accesses it has to be duplicated from that unique key pattern. Once a unique key pattern is duplicated and distributed, tight control over that lock is essentially lost. I wanted a key-centric solution, meaning each key would be unique and that unique key could be used with various locks. Being unique myself, ideally I wanted that unique key to be me.

I started looking into biometrics, things like face recognition technologies and fingerprint readers. The problem I ran into was the fact that these solutions, when done the right way, were very expensive and resource intensi ve to implement. At the time, there were also serious and valid concerns over the security and reliability of biometric solutions. Also, because I would need to put the camera or fingerprint reader outside, I was also concerned about vandalism. At the time, there were not many reliable biometric options rated for outdoor use that could tell the difference between my real face and a picture of my face, or my fingerprint versus a latex glove fingertip filled with water pressed against the sensor where the remnants of my own fingerprint left on the sensor would betray me. However, I did find a variety of very inexpensive RFID readers, and writing my own software to work with them was a no-brainer. The only down side to RFID was the fact I had to carry around an access card. That got me thinking about pet implants again, and I realized I could get the benefits of RFID without having to carry around anything.

5.2. The RFID Tag Acquisition

The first thing I did was look into getting an actual pet tag implanted, but there were a few issues with pet tags. I discovered there were many different kinds of RFID, and they did not all play well with each other. As it turned out, I could not find any cheap readers that would read the pet tags, and nothing really existed in the OEM hardware space which would have allowed me to easily integrate the pet tag into a custom built access control solution. Another issue was that pet tags have a special porous “anti - migration” coating on them that is designed to allow flesh to grow into and lock the implant in place, making removal or replacement nearly impossible.

There was another option for RFID implantation; the Veri Chip. I had already heard about how the Food and Drug Administration (FDA) had approved the VeriChip for implantation into humans, but the Veri Chip had the same issues pet tags had. Hardware options were very limited and expensive, and the tags also had anti-migration coating on them. I also found out that you must be registered in the Veri Chip database to receive one of their implants, which I had issues with considering my goals and intended uses were all private in nature.

Left hand with EM4102 implant and USB reader

So, I figured I would just start with a basic keycard system and find some cheap RFID readers that were easy to interface with or were designed as OEM hardware I could easily integrate into my project. I found several reader options that read EM4102 based tags, so I started looking around for RFID tags based on the EM4102 chip. What I found just about made me jump out of my seat. I found a website that sold EM4102 based RFID tags that came in a glass ampoule form factor just like the pet tags! In addition, these did not have any coating on them. I immediately ordered the reader hardware and a few glass tags (figure 1).


While I waited for the equipment to arrive, I started calling tag manufacturers to find out what differences there might be between the glass tags I ordered (which were not designed for implantation) and implantable pet and human glass tags. It turns out there were only a few insignificant differences, the first of which was that tags did not have the anti-migration coating on them. Second, the EM 4102 based tags did not use the International Organization for Standardization (ISO) animal implant data protocol, which I did not care about either. Finally, they were not manufactured or sold as sterile equipment. After several difficult conversations with various manufacturers, I found out the glass used in the tags I ordered and the animal (pet/livestock/human) implantable tags were the same stuff. That was good enough for me, so as soon as the tags arrived, I was arranging my first implant procedure. At the time I was running a managed computing service designed for medical clinics and had several doctors as clients. Once I confirmed the glass tags worked, I scheduled the implant procedure with one of my clients, a cosmetic surgeon, and started building projects. At the time, I did not tell anyone that I was scheduled for an implant procedure, partly because I was so busy creating my first access control project and partly because at the time I did not consider getting an RFID tag implanted in my left hand to be that novel of an idea. A couple days later after a five minute procedure my left hand was RFID enabled and I had a basic access control system built for my office door.

5.3. A Cyborg or an Electrophorus?

People often ask if I feel any different now, or if I can feel the tags under my skin. Over 5 years later, the answer to both questions is no, not really. I do not feel any different, nor can I feel either implant unless I physically poke one with my finger. In fact, I often forget they are there until I have to use them.

At first it was kind of weird though, and during times of boredom I found myself mindlessly poking at them and feeling the implants under my skin. There was this kind of this cool factor to using them. I would put my hand to the front door and it would unlock, and people would be like “What!? Hold on … what just happened?” and at the time I kind of did feel like a cyborg of sorts.

But over time, the novelty wore off, and now they are just the useful tools I always wanted them to be. Even the interesting conversations I used get into with people regarding safety, security, privacy, religious concerns, and the future of the technology itself now tend to be redundant and repeat themselves constantly. Even my definition of what a cyborg is has changed.

The well-known Professor Kevin Warwick underwent the first human implantation of an RFID tag long before I even thought about doing it. He called that project Cyborg 1.0, which captured both headlines and imaginations. My definition of cyborg is a bit different however. A person with a cochlear implant or even a pace maker, those people are truly mixing technology with biology to become a cybernetic-organism (cyborg). What I have done is simply move an RFID tag from my pants pocket to a skin pocket. There is no biological interaction, and to me that interaction is what defines a cyborg. Michael and Michael [28] distinguish between what is traditionally considered a cybernetic-organism and DIY implantees who are merely “bearers” of technology (i.e. an electrophorus). I think that it is a good idea to have a term that separates us from cyborgs.

So why even bother with implanting a tag in the first place? A lot of people also ask me why “take the risk” putting it under my skin? Why not wear a watch or ring or something with a tag in it? The simple answer is-I won't wear a watch or a ring for very long without losing it. It would be like wearing a backpack everywhere you went; you would just want to take it off all the time due to it being uncomfortable. When I looked at what was possible with glass encased tags and the history these types of RFID implants had with pets, I really did not think twice about getting one implanted. Not to say that I did not do my research first [29], but the actual decision to get a tag implanted was made in a matter of seconds, and I have never regretted it.

Section 6. Is Implanting an Rfid Tag in the Body a “Safe” Practice?

Safety is a big issue, and is still a concern for every do-it-yourselfer (DIY) tagger that is considering or has already undergone an implantation procedure. Given DIY tagging is done through the sheer will of one's own accord, every tagger must take full responsibility for their decisions and actions, their health, safety, and the ultimate outcome of their RFID implantation endeavors.

Table 1. Primary safety concerns for DIY taggers

As the DIY community grows, and more people get non-FDA approved glass tags implanted in non-FDA approved locations, so too the concerns over the safety of RFID implants will grow (Table 1).

6.1. Sterilization

A common method for sterilizing medical equipment is to place it into an autoclave, where heat and pressure destroy any pathogens. The temperature reached inside an autoclave however, is well above acceptable operational and storage specifications for most RFID tags. Due to this, I did not autoclave my glass tags. Both my implants were sterilized by soaking them in a liquid antiseptic for a few minutes before the implantation procedure. As others learnt of what I had done and expressed interest in getting a RFID implant, I suggested they avoid using the autoclave to sterilize their tags as the heat may damage them.

I later performed a test, placing five 2×12mm EM4102 based glass tags in an autoclave for a full one hour cycle. All five tags came out sterile and in working order. On the RFID Toys forum, other users reported similar success with the autoclave and EM4102 tags, leading me to now suggest purchasing at least two tags and putting them through the autoclave prior to implantation. Of course, testing the tags after the sterilization process and before implantation is strongly suggested.

I believe read-only EM4102 tags are able to withstand the high temperatures of the autoclave because the IC chips typically have their unique IDs laser etched into ROM at the factory. Other tag families such as the Philips HITAG with writable memory blocks may not fare as well with such high temperatures, and significant damage to the writable blocks may occur.

6.2. Location

For his Cyborg 1.0 project, Professor Kevin Warwick decided to implant a glass encased tag into the upper inside of his left arm, beneath the inner layer of skin and on top of the muscle [31]. The location seemed to offer a safe haven for the fragile glass casing. Nine days later the tag was removed without complication.

Unlike the typical VeriChip or pet identification applications where a handheld reader is brought in close proximity to the implant, I use my implants in applications where the tag must typically be brought to a fixed reader. Because the normal operational range of small cylindrical glass tags is anywhere from one to four inches, I chose to implant both my tags (one in each hand) into the webbed area between my thumb and index finger, just under the dermis layer. This location allows me to easily position my RFID tags very close to a reader, while still providing an amount of soft tissue to cushion and protect the tags from blunt force impact. Being just under the skin and not in muscle tissue also allows for easy removal or replacement. Most, but not all, DIY taggers have chosen the same location for their implants.

6.3. Migration

Glass encased RFID tags which are designed for implantation in animals or humans typically have an anti-migration coating of some sort affixed to the glass casing. This porous material allows the implantee's flesh to grow into the material which stops the tag from moving around in the body.

The primary purpose of keeping the glass RFID tag located at the selected implantation site has more to do with consistency and ease of use than potential health risks. Veterinarians need to be able to reliably scan the same area on every pet to determine if the animal has a microchip. If tags were able to migrate from their implantation site, vets may fail to successfully scan and identify a tagged pet. In the case of tagging livestock, you do not want to accidentally have a tag migrate into a piece of meat that ends up on the consumer dining table or in scrap pieces of carcass which may be rendered for a variety of food chain-related uses.

Like myself, the DIY tagger community has taken to using glass tags which are not designed for implantation, and as such do not utilize this coating. The lack of coating allows tags to be removed or replaced much more easily than if they had this coating, and after five years neither of my tags have migrated from their implant sites. This may be due to the fact that my tags rest in congruous elastic skin tissue rather than fibrous muscle tissue which is bundled into separate strands that an implant could move between.

6.4. Structural Compromise

The thought of a glass capsule being crushed into small sharp shards while it is still inside one's body does not produce feelings of excitement or enthusiasm. Concern over the structural resilience are warranted, since the cylindrical glass capsules encasing the RFID tag's electrical components (IC, antenna coil, etc.) have very thin walls and are easily crushed using common medical instruments like forceps.

The FDA initially considered the Veri Chip as a class II device which requires special control testing [32]. However this testing did not include any sort of structural integrity test. No crush/penetration tests were performed, and key factors such as lateral stress or compression limits. are unknown. Later, the FDA reclassified the Veri Chip [33], placing it in the type III group of devices which has even fewer controls. The health risks specifically identified in the K033440 reclassification include [34]; adverse tissue reaction, migration of implanted transponder, failure of inserter, failure of electronic scanner, electromagnetic interference, electrical hazards, magnetic resonance imaging incompatibility, and needle stick. No mention of glass casing fracture or structural compromise.

After five years using my own implants and talking to many DIY taggers who have followed suit, I have not heard of anyone having any issue with crushed or compromised tags. Still, the concern is valid, and the choice of implant size, location, orientation, proximity to bone and other inflexible tissues all play a role in avoiding structural compromise.

6.5. Removal and Replacement

At the time of this writing, I have not observed any accounts of DIY taggers getting their implants removed or replaced. However, the implantation of glass tags that do not make use of a polypropylene polymer based anti-migration coating should enable the tags to remain detached and separate from the body, making removal easier.

Rather than implanting tags deep into muscle tissue, which would require invasive surgery to locate and remove, DIY taggers tend to prefer shallow implantation just under the skin. This reduces both the complexity of locating and the size and nature of the incision required to remove the tag. It also means the body is less prone to inflammation and infection-related side effects.

6.6. Cancer Risk

What started off the recent cancer discussion surrounding animal identification RFID implants was a paper published about a French bulldog who received an RFID “pet microchip” implant in September of 2003 at age 9. In April of 2004 he was examined and found to have a “lump” at the implant site [30]:

“[o]n April 2004, Leon, a 9-year-old male French Bulldog, was examined by the referring veterinarian, based in Guelph, Ontario (Canada), for the sudden growth of a subcutaneous 3×3-cm mass located on the dorsal midline of the neck, just cranial to the shoulders. The dog was regularly vaccinated against the most common canine infectious diseases and rabies, and was micro chipped (Indexel, Merial, Lyon, France) in September 2003.”

This news spread quickly, and older studies were dug up revealing similar links in laboratory mice and soon the firestorm was in full swing. I started getting all kinds of concerned emails from DIY taggers, media interview requests, and more hate mail from concerned members of the public. After reading the studies however, it became clear to me that the risks were not as exaggerated as the media and RFID critics made them out to be.

For example, many articles citing the above-mentioned study claimed the French bulldog “had a giant tumor surrounding the implant” and that the dog had died “an untimely death” from that cancer. Upon simply reading the paper I found both those assertions were false [30];

“The microchip was found, not embedded within the tumor, but immediately adjacent to it, surrounded by a very thin fibrous wall (approximately 1 mm thick) and some fresh hemorrhage.”

Reading further I found [30];

“After surgery, the dog was not vaccinated or microchipped again. Up to now, the dog is well, and no recurrence has been observed.”

So basically the dog was doing fine two years later when the study was published in 2006, and the paper calls out various other possible causes such as postinjection fibrosarcoma (a well-known pathologic entity) characterized by inflammatory peritumoral infiltration, multinucleated giant cells, and myofibroblastic cells.

The plainly published facts did not seem to matter though. Both mainstream media and RFID critics alike jumped all over the academic paper and dug up other studies from which to pull completely out of context findings. However, other papers cited within that French bulldog study do point out implants which were embedded in the center of neoplasms. So what is going on here? I started looking into other studies after visiting sites like [35] publishing statements like the following:

“[i]n almost all cases, the malignant tumors, typically sarcomas, arose at the site of the implants and grew to surround and fully encase the devices. These fast-growing, malignant tumors often led to the death of the afflicted animals. In many cases, the tumors metastasized or spread to other parts of the animals. The implants were unequivocally identified as the cause of the cancers.”

The bottom line for myself and other DIY taggers was simple: should we be concerned about this? For the most part, what I found after digging into many of these studies was that these laboratory mice were either genetically prone to cancerous growths or subjected to radiation and/or chemical carcinogens in an effort to intentionally stimulate cancerous growth. So now the question becomes, what would cause cancer to grow around an implant? There could only be two things; the glass used to encase the RFID tag or the anti-migration coating used to lock the implant in place in the flesh. In both instances more research is needed, however it is my personal opinion that the porous coating will likely be revealed as the leading factor in stimulating cancerous growth in the area immediately surrounding implantation sites in predisposed specimens.

6.7. Taking Personal Responsibility

While I believe everyone today needs to take a bit more personal responsibility when it comes to the decisions they make, for a DIY tagger this is especially true. A draft DIY tagger code is depicted in Table 2.

Table 2. DIY tagger code

Part B-Socio-Technical Issues

In Part B, Michael and Michael relate events about Graafstra, and Graafstra relates events about others. The whole Part is written in the third person voice. Where direct quotes are used, Graafstra's sentiments and interview responses are captured verbatim. In this part the main socio-technical issues facing RFID implantees is discussed, including security, privacy, data ownership (personal versus commercial), social issues (e.g. religious responses and socio-political concerns), law and policy. Due to space limitations the authors do not go into great detail in each of the socio-technical issues addressed, rather, this remains the aim of a future work-in-progress. Part B concludes by acknowledging the role of all the stakeholders in the feedback mechanism towards social innovation.

Section 7. RFID, Implantees and Security

RFID is a very broad term that encompasses a plethora of technologies that are all designed differently but do one thing; identify something via radio frequency (RF) communication. That includes everything from the World War II identification friend or foe (IFF) systems to implantable tags to RFID enabled credit cards. As recent as 2006, the United States Department of Homeland Security (DHS) was debating the use of RFID for humans. In reports [37] and [38], it is clear that while one DHS full committee found that deployment of RFID for human identification should be done with caution, the second report by a subcommittee ruled that the practice was inappropriate [39]. The recommendation by the DHS subcommittee read [38]:

“[t]here appear to be specific, narrowly defined situations in which RFID is appropriate for human identification. Miners or firefighters might be appropriately identified using RFID because speed of identification is at a premium in dangerous situations and the need to verify the connection between a card and bearer is low. But for other applications related to human beings, RFID appears to offer little benefit when compared to the consequences it brings for privacy and data integrity. Instead, it increases risks to personal privacy and security, with no commensurate benefit for performance or national security. Most difficult and troubling is the situation in which RFID is ostensibly used for tracking objects (medicine containers, for example), but can in fact be used for monitoring human behavior “For these reasons, we recommend that RFID be disfavored for identifying and tracking human beings. When DHS does choose to use RFID to identify and track individuals, we recommend the implementation of the specific security and privacy safeguards …”

Many RFID technologies are insecure by design, or employ weak or flawed encryption methods. However, that is not to say that an RFID system using an insecure RFID technology is itself insecure by default. Despite the early 2006 findings of the DHS reports, there are U.S. RFID-based schemes which are now in widespread use. Graafstra points to the “trusted traveler” RFID-enabled NEXUS card as an example [40]. The NEXUS card is a U.S. government issued travel card that has an ultra high frequency (UHF) RFID tag inside, which does not employ any encryption technology. Any Generation 2 (Gen 2) UHF reader can read the unique code stored in the tag. The RF technology used by the NEXUS system is insecure, but the NEXUS system that allows one to travel across various borders is not inherently insecure, so one's identity is theoretically not at risk. Graafstra elaborates: “[t]he Gen 2 ID stored in my card is a unique number, but that number in no way gives up any information about me to an attacker who may be able to read it-it is just a number. The systems that link that ID number to actual important information about me are secured in far superior ways than the systems that store your library card account, or in some states, even your dri ver license information.”

Like NEXUS travel cards, the VeriChip medical implant does not employ encryption in any way. Any passive 134 kHz reader capable of understanding the VeriChip data protocol can read the ID of any VeriChip implant. Even though these IDs are tied to medical records, the ID itself is useless to a random attacker because access to those records also requires both access to a medical network and a health professional's account password. Systems that employ encrypted RFID tags have, in the past, relied heavily on the crypto algorithms in the RFID tags themselves to secure the system in which RFID technology was integrated into.

Graafstra uses the example of ExxonMobil's pay-at-the-pump SpeedPass system and the many vehicle immobilizer systems that make use of the 134 kHz TI DST tag, which secures communication through a challenge/response mechanism. The problem with these systems Graafstra outlines is that because they do not possess any other security mechanisms outside of the RFID tag's encryption, the systems are vulnerable to fraud by cracking the encryption algorithm used by tags to generate proper responses to the challenges issued by commercial readers. Once the DST tag crypto had been cracked [41], ExxonMobil had to redesign their SpeedPass payment system to implement credit card style fraud detection to detect and prevent fraudulent transactions. Other tag chipsets that employ encryption mechanisms like MiFare and HIT AG S have also been compromised, leading systems designers to rethink security and start balancing RFID encryption with other security mechanisms.

Graafstra points to the fact that his left hand contains an EM4102 tag, which by design does not utilize any security measures. The tag ID is readable by any 125 kHz reader able to understand EM4102 tags and get close enough to read the tag. He comments, “[e]ven so, I use that tag to unlock my back door when I get home from work. Many would argue that my home is completely insecure because my implanted tag is not secure. I do not disagree, but I also do not believe that I am at any greater risk of home invasion as a result.”

7.1. Security Context

Quite often people think security is a pass/fail scenario. Either something is secure or it is not. In reality, a security policy is a collection of systems, methods, and procedures that protect an asset by removing enough value and/or applying enough deterrence that a potential attacker will not even bother or quit trying. To get to the heart of the matter, you have to start with the premise that nothing is truly secure. If there is enough desire, determination, and resources available to an attacker, they will eventually succeed.

The inherent lack of encryption in many RFID tags impacts DIY taggers building personal use applications differently than it does commercial enterprises like Veri Chip, ExxonMobil, and VISA/MasterCard with their public use applications. Graafstra argues that despite the fact that he uses an insecure RFID tag to unlock the back door of his house, if a random attacker were to get close enough to read the ID of the EM4102 tag implanted in his left hand, they would not have any way to derive his identity (e.g. name), his home location (e.g. where he lives), or his phone number. This is however discounting the simple fact that one can be covertly followed in a public space. Graafstra believes an attacker intent on entering his home would generally use more mundane approaches such as breaking a window, than going to the effort of a technical approach. Graafstra's observations are quite correct, for the time being, until more and more DIY taggers start to rig up their personal living spaces with readers.

7.2. Designing with Security in Mind

7.2.1 RFID Cards in the Corporation

Assuming the encryption algorithms used by “secure tags” today have been or will soon be cracked, system designers need to shift from exclusive reliance on tag encryption and incorporate other features to make their systems more secure. Starting with the RFID tag itself, several businesses integrate RFID access control tags with their employee name badges. These can be constructed with a simple push button membrane or switch that connects the RFID antenna to the tag IC. Graafstra recommends that given the user already has to handle their name badge in order to place it close enough to a reader to get a valid read, why not require a simultaneous press of a switch while doing so? For Graafstra, such a simple design change would eliminate almost every possibility for a non-consensual read by malicious users.

Access control systems can also be designed with more intelligence than they currently possess. Graafstra relates the following scenario with respect to physical access control to a corporation. Assume Dave of XYZ Corp has been the victim of a malicious card scan. The attacker intends to emulate Dave's card ID to gain access to the building by mixing in with the morning rush of people. Dave enters the building first, and then the attacker enters five minutes later. Dave goes to his desk by way of the elevator and a couple of other security doors where his badge is used. The attacker takes a different route to his target, using his emulated Dave badge. The system should be able to recognize the odd access pattern through validation and alert security, possibly offering up an employee photo along side a time stamped video of the various RFID access events. Security personnel could then quickly determine if there was an attempted security breach they needed to address. If so, they could lock down Dave's badge so it no longer functioned, and even set up real-time mobile alerts to tell roving security guards if and where the badge was trying to be used. In theory, Graafstra is correct, system designers for the greater part are not thinking foolproof security blueprints but the reality is that budgeting and security staff resourcing would possibly not allow for such sophisticated security interventions; detection is one thing, acting on an email or mobile alert is another.

7.2.2. RFID Implants and Diy Tagger Protection

Graafstra has spent a great deal of time thinking how DIY taggers could protect themselves from what he terms “casual” security attacks. He has documented his solution as follows. Using the read/write memory blocks that many types of tags have is a good way to increase both the risk and the amount of effort an attacker would have to exert in order to successfully execute an attack. For example, the HIT AG S 2048 tag in his right hand uses 40 bit encryption to protect the contents of its 255 byte read/write memory blocks. The 40 bit encryption will not stop a serious attacker but it will diminish the casual attacker's ability.

Graafstra elaborates in detail: to enhance the security of a system, the memory space can contain a pseudo-random rotating hash which is used in conjunction with the tag's read onl y unique serial number to confirm authorized entry. The hash is generated based on a secret key that only your system knows, coupled with an incrementing counter used to salt the hash. When the hash is read, the system uses much more powerful encryption algorithms to calculate and match the hash stored on the tag than the tag itself is capable of utilizing. The counter value is derived and checked against the system counter to ensure the encrypted hash is correct for the tag IDand to ensure the counter value is moving forward and not staying still or moving backward. Upon successful authentication, the counter is updated and a new hash is written to the memory blocks. If an attacker were able to break the 40 bit encryption to gain access to the memory contents, a successful attack is still orders of magnitude more difficult to pull off than plainly emulating an unencrypted tag. Also, a successful attack would provide a very small window of opportunity as any use of the original card would invalidate the cloned tag's counter/hash combination.

Section 8. RFID Implantees and Privacy

8.1. Misconceptions About RFID Technology

There are a lot of misconceptions in the general community about how various RFID technologies work, prompting unfounded fears of global positioning system (GPS) satellites tracking embedded tags and implants. This is not to say that in the future RFID tags will not be able to interface with a number of different mobile technologies but for now this kind of global tracking is unavailable. And this not because it is not technically feasible to do so, but rather because large-scale agreements have not yet been entered into between a variety of stakeholders.

Active RFID tags can transmit data very long distances, anywhere from a few feet to 10 miles or more, but they use battery power to do so and are bigger and bulkier than passive RFID tags. Inversely, passive tags like those used in retail inventory applications and glass encased implants are typically smaller. They do not have internal power sources, and can generally communicate with readers from only a few inches to a few feet away depending on chipset, size, and frequency used. Certain experiments have shown, under ideal conditions, that passive UHF tags can be read from several hundred feet, but those are special test cases not practical real-world scenarios. Even so, the prevalent fear amongst every day consumers is that, somehow, carrying an RFID tag of any kind will allow “them” (e.g. government agencies) to track your every move.

Today, people's activities are logged constantly. From every non-cash purchase you make to every RFID “fast pay” toll booth archway driven under to every phone call made, something somewhere is logging that activity. Graafstra points out the potential for data mining through a variety of sources, emphasizing that “[n]obody is upset about this type of information gathering as they are about RFID technology … [and that] the backlash from specific segments of the public seems to center on embedded tags, whether they are embedded in clothes, in driver license cards, or people's bodies.” For Graafstra, the stated concerns indicate people believe RFID is capable of more than it really is, and that those perceived capabilities culminate as fear of massive privacy invasion on an unprecedented scale.

8.2. Some Consumer Concerns Warranted

Although Graafstra does acknowledge that some consumer concerns with respect to RFID are valid, he believes the concern is misdirected at the technology itself rather than on human factor issues, e.g. consent. He emphasizes that unobtrusive reads amount to privacy problems, and that to some extent history has already proven that this is a valid concern. Clothing manufacturer Benetton, for example, was found to be embedding RFID tags into women's garments in an effort to quickly identify past customers as they walked into their storefronts [42]. Graafstra also singles out the idea of function creep, inferring that consent given for one use may be extended at a later date as the application grows. People who have to travel over toll roads and bridges may opt to use an RFID tag permanently affixed to their windscreen for automatic payment may find that the terms and conditions they originally signed up for have changed, and in some instances without warning. For example, some state governments collect data from RFID tollway tags to monitor traffic patterns on their roadways without notifying users. Furthermore, logs of which tags passed what checkpoint at what time are kept for undisclosed periods of time and log data could potentially be shared with an unknown number of requestors. Graafstra questions whether the next step will indeed be to issue speeding fines based on how fast people have traveled from checkpoint A to B.

8.3. RFID Tags: Personal Versus Commercial Use

Now let us take a hypothetical look at RFID privacy in a hostile environment, and the differences between personal use and commercial use contexts. When you sign up for a commercial service that utilizes RFID in some way, you surrender your personal information which is tied to that unique tag ID. Assuming the company does not share your tag ID or your information with any other person or company, your information is still associated with that tag ID and could be used to violate your privacy through nonconsensual reading of the tag. The problem gets worse if that company sells or shares that data with other companies or people.

In a personal use context, you never surrender your personal information to anyone, and your tag ID is in no way associated with you. The best any snoopy corporation or government could do would be to aggregate non-identifiable data together to determine patterns of anonymous tag IDs. Of course, there is always the concern that associations could be made through other means. For example, suppose a checkpoint was set up that could read a large cross-section of tags from RFID enabled credit cards, access cards, various tag types in UHF, high frequency (HF), and low frequency (LF) frequency ranges, etc. A properly read and decrypted RFID credit card will reveal the cardholder's name, and if other tag IDs always showed up in logs when “Dave's” unprotected RFID-enabled credit card did, then one could assume that all those RFID tags resided in Dave's wallet with his credit card. While this fact may be disconcerting, Dave can still take measures to protect himself, by choosing to shield his tags and cards [43], or even leave them at home. But what about implanted RFID tags? Leaving those at home is not possible and shielding them could be socially awkward (always explaining why you're wearing tin foil gloves), even though increasingly sentinel jackets are coming onto the market.

Implantable tags like VeriChip which are sold to the public for use within commercial systems do present different privacy challenges than the glass tags implanted by DIY taggers. A commercial system means uniformity when it comes to things like implant location, type of chip, data protocol, and frequency. Since the implant location is common to all users (e.g. in the case of the VeriChip it is the triceps muscle of the right arm), Graafstra believes that a simple reader can be set up at typical arm height in a doorway to casually capture tag IDs from passers-by. With enough people using a common system and enough readers placed in enough doorways, unique traffic profiles could be created for each tag ID much more easily.

Section 9. RFID Implantees and Society

9.1. PET and Animal Identification Systems

Whether people like to admit to it or not, society today is full of RFID tag and transponder technologies embedded in buildings, in vehicles, in packages, in clothing, in animals, and in people's wallets. This diffusion will continue to grow annually with predictions that 26.1 billion units will be sold in 2011 alone [44]. Passive RFID tags designed to be implanted into animals have been around since the early 1980s. After being widely tested by several companies in the early 1990s (such as Destron's LifeChip [45]), the number of pets with implanted RFID tags has skyrocketed as local councils and state governments move to make the chipping of domesticated animals compulsory [46]. To date this practice, above all else, has done more to raise public awareness of the positive applications of implantables than any other use of implantable RFID tags.

Today RFID tags, both passive and active, are used to keep tabs on everything from pets to livestock to wild animals on land, in the air, and in the sea. Graafstra notes, that the U.S. Fish and Wildlife Service uses “microchipping” in its research of wild bison, black-footed ferrets, grizzly bears, elk, white-tailed deer, giant land tortoises and armadillos. New developments in sensors, RF, and power harvesting technologies are also leading the way to “implantable” RF enabled sensors embedded into trees (e.g. orchards). These “tree tags” relay information about the health of the tree, the surrounding forest environment, and raise an alarm in the event of a forest fire [47].

9.2. Is it Hip to Get the Chip?

Since Michael and Michael began their research into non-medical ICT implantables in the mid-1990s, they were preoccupied by the question of diffusion, and predominantly the notion of who influenced whom within the context of an actor network. For example, who was the first DIY tagger implantee? What inspired them to get an implant? How did they come to know of other implantees? When Graafstra received his first implant, he knew he was not the first. Professor Kevin Warwick had long since completed his Cyborg 1.0 project, and VeriChip had received FDA approval and was already implanting customers. Graafstra believes what he embarked on in early 2005 created such a media interest because he got the implant on his own accord, and he self-reported it all using photographs and video via the web. He also was comprehensive in his documentation of what he planned to do with his implant, and quickly demonstrated its functionality. Finally, he also believes implanting a RFID device in the hand, and not in the upper arm, sparked more intrigue and inquiry.

Since that time Veri Chip (now PositivelD [48]) have been marketing their products, and to date allegedly have between 1000 and 2000 people registered in their medical implant database, although some estimates are much lower and some much higher. The size of the DIY community is, by its very nature, unknown. Yet shortly after news of Graafstra's implant became public, he was contacted by lots of members from the general community who wanted to know how to obtain an implant themselves. Graafstra is frank, when he states: “today, anyone can buy glass encased RFID tags and watch self-implantation procedures online, and then go to their local piercing shop to get it done”. One is left pondering, however, whether DIYers are engaged in the act of blueprint copying or idea diffusion, and the repercussions that this might have on how RFID implants are utilized in the future. Jared Diamond describes blueprint copying as the act of copying or modifying an available detailed blueprint. At the opposite end of the spectrum lies idea diffusion, which is when one receives little more than the basic idea and has to reinvent the fine details [49].

Graafstra estimates there could be roughly 200 or 300 DIY taggers around the world who have opted to get a non-commercial RFID implant. Graafstra is reflective, that while he does not know the exact number of DIYers, he does know (or at least understands) the inner motivations of some DIYers to get an implant is less than technical. He said:

“I've been contacted by 16 year old kids who have had to wait until they are 18 to get this done due to - what I think are - valid parental concerns. On my RFID forum, I have repeatedly suggested that it is not worth taking even a minor health risk to get this done if you do not really know why you want it and what your goals are once you have it. Even so, when I asked a couple of these kids why they wanted to get an implant and what they were going to do with it, in both cases their responses were something along the lines of “because it's cool” and “I'm not sure what I'm going to do with it”. I have also been contacted by body-madders who, after getting their fifteenth cosmetic subcutaneous silicone implant, wanted something different … something that was actually functional in some way, even if they did not have any plans to actually use it.”

However most DIY taggers tend to view their implant as a utilitarian tool to be used in daily life with projects they have built themselves. In this loose-knit community [50] of practical DIY taggers, one could argue it is actually “hip to get the chip,” even though the best place for it is unanimously the hand!

9.3. RFID Implants for Families: Peace of Mind?

When considering the applications that Applied Digital Solutions were marketing in 2003, and those that were subsequently marketed by the VeriChip Corporation, Graafstra circumspectly calls the “brochureware” confusing from a marketing perspective at least. For Graafstra, any sort of communication that misleads the public about pinpoint location positioning via the RFID chip is widely fantastical and utterly disappointing. He does not understand, how on the basis of a commercial vision, the Mexican Attorney General allowed himself and some of his staff to be Veri Chipped with an “anti-kidnapping chip”. Parents, like that of Jeffrey and Leslie Jacobs were also lead to believe, probably through mainstream public misconceptions about the function of RFID, that getting a Veri Chip implant would provide their whole family with security and “piece of mind” [51].

The fact is, no RFID implant can provide that kind of security and “traceability” that certain members of society are looking for or are afraid of. The best an RFID implant can do today, is identify the person sitting two inches away from the scanner. That may help identify a corpse, but it will not help find missing persons. This is not to say that in the not-to-distant future, technological convergence might enable very sophisticated applications to be built. The idea of implanting prisoners, persons on parole or persons on extended supervision orders (ESOs), or military service-people with digital implantable dog tags has been considered but has yet to take place. Again, Graafstra points to public polls where consumers believe that implanting prisoners or parolees would make society “safer” because it would make implantees easier to track down and keep in confined zones if required, but he is adamant that these kinds of solutions are not yet possible using implanted RFID tags. The permanency of FDA approved implantables is especially disconcerting as they possibly do not give one-time offenders, or once military service personnel, an opportunity to rehabilitate or move onto other professions [52]. For Graafstra this is a violation of service terms, since imposed subcutaneous FDA approved commercial implants are long lasting physical remnant of requirements that have long since expired, and no longer valid.

9.4. RFID Implants for Employees and the Law

To date, no employer has required an employee or potential employee to obtain an RFID implant in order to become or remain employed. Critics jumped on inaccurate media reports that, a now defunct municipal surveillance company, had required employees to get implants to access sensitive datacenters. The fact is three employees did receive VeriChip implants and the company paid for their procedures [53]. However, five employees opted to simply carry around an access card to access those same areas. Implantation was optional, not compulsory. There was a similar optional implantation of employees at the Baja Beach Club in Barcelona, Spain but this was not really publicized.

As a preemptive measure several states in the U.S.A passed laws that banned enforced implantation by employers [54]. For Graafstra the problem has more to do with laws and regulations which target a technology than the very ‘act’ of surveillance. Graafstra notes the law passed in California (Senate Bill 362) that banned employers from mandating that employees or potential employees must get an identifying implant in order to perform their work [55]. The law is written with a heavy slant toward a “radio frequency device”, but an argument could be made that this law also covers biometric technologies and other location based mobile technologies. Intentional or not, the definitions section states;

“Identification device” means any item, application, or product that is passively or actively capable of transmitting personal information, including, but not limited to, devices using radio frequency technology.

“Subcutaneous” means existing, performed, or introduced under or on the skin.

For Graafstra such laws do not do anything for employee workplace rights as a plethora of other technologies exist to determine the whereabouts of workers within campus-based facilities like manufacturing plants. For Graafstra, it has less to do with implantables, and more to do with employee privacy.

9.5. Is Getting an RFID Implant Evil?

Many people believe that RFID implants will harm society and/or humanity in some way. The two most vocal groups are people expressing their religious views, and people expressing their socio-political fears [56]‥

9.5.1. Religious Concerns-“Mark of the Beast”

The interpretation of the Book of Revelation, the last book of the New Testament, by some Christians has caused Graafstra to be the target of backlash by some members of the believing community. Graafstra points to the following verses that RFID critics with a religious orientation invariably point to (Revelation 13: 16–18):

Also it causes all, both small and great, both rich and poor, both free and slave, to be marked on the right hand or the forehead, so that no one can buy or sell unless he has the mark, that is, the name of the beast or the number of its name. This calls for wisdom: let him who has understanding reckon the number of the beast, for it is a human number, its number is six hundred and sixty-six.

From the correspondence that Graafstra has received, he has deduced that some Christians believe that “the devil” will require all of humanity to receive a mark of some kind in order to be able to participate in day-to-day societal transactions. And that furthermore, wise people will recognize that mark and attempt to refuse it. Those who are most vocal about such beliefs have gone so far as to insult and threaten Graafstra, and other DIY taggers about their involvement in ICT implants. Graafstra has spent some time reviewing the passages himself countering:

“[s]ince so many people seem to take the Bible so very literally, in my opinion there are a few things they are either ignoring or do not realize. In verse 16, it says “he causeth all” which means everyone will receive “the mark” regardless of whether they want it or not. In verse 17 it says “no man might buy or sell [without the mark]”, meaning absolutely nobody will be able to do this, even if you are living in an igloo on the North Pole trying to do it illegally. In verse 18 it says nothing about wise people refusing the mark or even being able to, it only discusses how to recognize it.”

There are, however, a number of places in Revelation (16:2, 19:20, 20:10) where it seems evident enough that people will indeed have to make a choice, viz., “the mark”. This was certainly the interpretation of all the early church exegetes who dealt with the prophecy [57]. For Graafstra, however, the mark and the beast are potent warnings about willing subscription to oppressive systems, and how using the tools of those systems will only strengthen such systems. It is very important to distinguish between oppressive systems that use technologies to subjugate a people, and technologies that liberate them, or those being used in a private, personal context.

9.5.2. Socio-Political Fears

Some people believe that RFID implants may one day be mandated on the general populace, instituted by totalitarian governments and other authoritarian regimes [58]. Such persons, firmly believe that RFID technology, particularly implant technology, will in some way enslave humanity and cause a major digital divide. These groups generally point to the involvement of large-scale corporations in the conception, development and implementation of RFID implant technology, and to some extent generate conspiracy theory-like scenarios about the future.

Graafstra also notes that he has been threatened both directly and indirectly by some people harboring sociopolitical fears. He elaborates:

“I have been accused of aiding the government and private corporations in their efforts to deploy RFID implants on a wide scale. I very strongly feel it is a priority to attempt to engage these accusers in civil discussion and attempt, however futile, to impart a bit of knowledge so they might understand how these implants function and ultimately the difference between and separation of DIY taggers from commercial solutions by corporations like VeriChip.”

Simply put, some advocacy groups are not helping the debate and whatever valuable insights they might have is lost in a host of “background noise”. The practice of

‘attracting’ hate mail is common among implantees (both in academia and DIYers), and as Graafstra emphasizes, it often does not encourage a healthy exchange of ideas, although it does alert developers to the social realities that may be stifling adoption and potential ethical liabilities development make need to address.

Section 10. RFID Versus Other Technologies

In Graafstra's opinion it is not so much that consumers should be wary of what RFID can do, but of the widespread diffusion of powerful biometrics and pinpoint positioning technologies. Despite that biometric identification is used extensively all over the world to identify and log all kinds of things, Graafstra notes that it does not receive the same amount of attention that RFID does from advocacy groups. Graafstra sums it up very well when he reflects:

“I think the reason for this is that RFID requires a tangible object carried by or implanted in the object to be identified. Biometric identification does not require this because the identifier is your own body. As biometric monitoring devices get more and more unobtrusive and fade further into the urban landscape, I fear lack of motivation will continue to get worse until a series of very serious civil rights violations occur, but by then we might have a social environment so riddled with circumstances where privacy and basic rights have been traded away for the illusion of security that the general public may actually be afraid to turn off and live without these systems.”

Today's biometric technology can identify you by your full body [59], face, voice, fingerprints, chemical scent, gait mechanics, emotional expressions, your DNA, and even your own shadow [60]. Video cameras are very cheap and easy to deploy, and developments in video processing enable face recognition systems to accurately identify entire crowds of people much faster and more accurately than ever before. If your face is not visible, gait analysis systems can still tell it is “you”, based on the way you walk or your body language. The U.S. military, among others, have been working with satellite imaging to successfully identify key targets based on the shadow they cast on the ground [61].

But beyond biometrics, there is now a plethora of positioning technologies entering the market at different levels of precision [62], [63]. Even the mobile phone (whether 3G-enabled or not) has become a potential privacy-invasive tool. In the U.S., President Barrack Obama recently suggested that U.S. citizens have “no expectation of privacy” with respect to their mobile phones, even when not making a call [64]. Graafstra is not alone in his belief that the idea that anyone from local police to government agencies should be allowed to request-without a warrant-your phone's location at any time (even if it is sitting idle in your home) “is a very scary step that moves the U.S. further toward a surveillance state”. The question as Graafstra has rightly put it is why are these issues not receiving the same attention as RFID tags and implantables? There is an obvious mismatch between perceived encroachments in privacy and actual encroachments in privacy. Advocacy groups might be lobbying for “no RFID implants” but what is here “now” is far worse.

10.1. Opting Out of Commercial ID Systems

If one wishes to opt out of an RFID-based system, users can issue requests to any third parties they enrolled with to have their account information destroyed. While this process and its full compliance is entirely in the hands of those third parties, destruction of the RFID tag is within the control of the users themselves. Tags can be returned to vendors, left at home, thrown out, physically destroyed, or in the case of implants physically removed from the body. However, removal of some RFID implants is more difficult than others. According to the company's product documentation, the FDA approved VeriChip is designed for permanent human implantation. Its Bio-Bond® anti-migration coating and the implantation procedure which seats the tag very deep into muscle tissue create a painful and expensive removal experience. The lack of anti-migration coating on the glass tags used by DIY taggers and their typically shallow implant locations allow easy removal that, in an emergency, could even be done with a sharp knife by the taggers themselves. With biometric systems however, the process of opting out is entirely handled by the third parties whose systems you have been enrolled in. Identifying all of these parties can be impossible if you have passively been enrolled in one or more systems without your knowledge. Furthermore, changing or destroying your biological identifiers can be extremely difficult, expensive, painful, or just plain impossible with today's technology.

Section 11. Conclusion

There is some truth in the belief that technology can be used for well intentioned purposes and not-so-well intentioned purposes alike; see for example the differences between two opposing schools of thought-technological determinism and the social shaping of technology. Graafstra believes that most, if not all technologies are neutral: “[i]t is the people who implement and use a particular technology that determine its effect on humanity.” In that regard, Graafstra is one of the first to acknowledge why some people might have a fear of the potential for wide-scale use of RFID implants, especially when claims are made by persons with limited knowledge of what the technology is capable of, or in other circumstances persons who are completely ignorant of technological capabilities.

In reality, people who rise up so fervently to speak out against RFID do provide valuable feedback to the social innovation process. Graafstra knows too well that there will always be people who can and will build and/or use technology in a way that may be or become oppressive to end-users. The role of the critic is to help in the provision of a balanced view and to ask the very questions that may have been ignored during the development process. Perhaps, in the end, it is even quite irrelevant that some of these opponents understand the technology's true capabilities or limitations. The challenge rather to technologists is to usefully harness the criticism, the feedback, in order to build into their products and solutions design safeguards that mean that identified “potential” threats or harms are minimized or eradicated. Religious advocates against RFID, or those that have socio-political fears about the potential uses of RFID, should attempt to enter into intelligent dialogue rather than burn energy in campaigning against global computer giants or writing disrespectful messages to individual persons who are said to be aiding in the fulfillment of prophecy. The same can be said for law and policymakers, who must be open to discussion and who must arrive at intelligent legislation and industry regulation that targets behavior and the misconduct a technology might enable, not the technology itself. For example, some anti-chipping laws in the U.S. only refer to “injectable” RFID implants but we already have swallowable sensor technologies being patented, and what of the future of nanotechnology for healthcare? Policy that singles out technology as the problem, only limits the scope and effectiveness of the policy per se, while not addressing the real issues lurking beneath the surface.


1. C. Grognard, The Tattoo: graffiti for the soul, Spain:The Promotional Reprint Company, 1994.

2. K. MacKendrick, "Technoflesh or “Didn't That Hurt?”", Fashion Theory: The Journal of Dress Body & Culture, vol. 2, pp. 3-24, 1998.

3. C. R. Sanders, Customising the Body: the art and culture of tattooing, Philadelphia:Temple University Press, 1989.

4. A. Graafstra, "One small step for hand: My first RFID implant", Blog, March 2005, [online] Available:

5. A. Graafstra, RFID Toys: 11 Cool Projects for Home Office and Entertainment (Extreme'Tech], New York:John Wiley and Sons, 2006.

6. "10 People or Groups Who Have Been Microchipped", RFID Gazette, September 2006, [online] Available:

7. K. Warwick, Professor Kevin Warwick, University of Reading, 2010.

8. J. C. Havens, "Hear and Know” –– Scott Silverman and VeriChip –– (RFID) Security Under The Skin", Association for Automatic Identification and Mobility, June 2006, [online] Available:

9. W. D. Gardner, RFID Chips Implanted In Mexican Law-Enforcement Workers, July 2004, [online] Available:

10. J. Halarnka, A. Juels, A. Stubblefield, J. Westhues, "The Security Implications of VeriChip Cloning", The Journal of the American Medical Informatics Association, vol. 13, pp. 601-607, 2006.

11. T. Lewan, Chips: High tech aids or tracking tools?, July 2007, [online] Available: http://www.usatoday.comltech/products/2007-07-21-928096800_x.htm.

12. A. Leo, "RFID Tags: Convenient Technology or Path to Government Monitoring?", Users of RFID Technology Grapple With Concerns, May 2006, [online] Available:

13. J. Oxer, Blog, 2010, [online] Available:

14. M. Trainor, RFID Art, 2010, [online] Available:

15. E. Kac, Time Capsule, November 1997, [online] Available:

16. A. Graafstra, "Hands On: How radio-frequency identification and I got personal", IEEE Spectrum, March 2007, [online] Available:

17. R. Ip, K. Michael, M. G. Michael, "Amal Graafstra The Do-It-Yourselfer RFID Implantee: The culture values and ethics of hobbyist implantees", Cultural Attitudes Towards Technology and Communication (CATAC08), 2008.

18. K. Michael, M. G. Michael, Innovative Automatic Identification and Location Based Services: From Bar Codes to Chip Implants, Hershey, PA:IGI Global, 2009.

19. K. Heim, "Man grips future with microchip implants in hands", Seattle Times, March 2006, [online] Available:

20. Staff Sun, "Implants turn humans into cyborgs", Vancouver Sun, January 2006, [online] Available:

21. Reuters Staff, "Computer chips get under skin of US enthusiasts", ABC News Online, January 2006, [online] Available:

22. A. Bahney, "High Tech Under the Skin", New York Times, February 2006, [online] Available:

23. G. J. Koprowski, "Where's Jimmy? Just Google His Bar Code",, May 2010, [online] Available:

24. A. Graafstra, "Interview with Katina Michael…", Blog, May 2007, [online] Available:

25. K. Michael, A. Graafstra, K. Michael, M. G. Michael, "Interview 14.2: The Do-It-Yourselfer RFID Implantee" in Innovative Automatic Identification and Location Based Services: from Bar Codes to Chip Implants, Hershey, PA:Information Science Reference, pp. 427-449, 2009.

26. C. D. Martin, "The myth of the awesome thinking machine", Communications of the ACM, vol. 36, pp. 120-133, 1993.

27. P. Atkinson, M. Hammersley, Ethnography: principles in practice, Abingdon, Oxon: Routledge, 1995.

28. K. Michael, M. G. Michael, M. Quigley, "Homo Electricus and the Continued Speciation of Humans" in The Encyclopedia of Information Ethics and Security, IGI Global, pp. 312-318, 2007.

29. A. Graafstra, "I take credit for that one …", Blog, March 2009, [online] Available:

30. M. Vascellari, E. Melchiotti, F. Mutinelli, "Fibrosarcoma with Typical Features of Postinjection Sarcoma at Site of Microchip Implant in a Dog: Histologic and Immunohistochemical Study", Veterinary Pathology, vol. 43, pp. 545-548, 2006.

31Cyborg 1.0 Wired, no. 8.02, 2000.

32. "Guidance for Industry and FDA Staff (Class II Special Controls Guidance Document: Implantable Radiofrequency Transponder System for Patient Identification and Health Information)", U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health General Hospital Devices Branch Division of Anesthesiology General Hospital Infection Control and Dental Devices Office of Device Evaluation, December 2004, [online] Available:

33US Department of Health and Human Services, vol. K033440, October 2004.

34Google Search “K033440”, 2010, [online] Available:

35. K. Albrecht,, November 2007, [online] Available:

36. A. Graafstra, "Release form for RFID implantation", Blog, December 2009, [online] Available:

37The Use of RFID for Human Identity Verification, December 2006, [online] Available:

38The use of RFID for Human Identification. A draft report from DHS Emerging Applications and Technology subcommittee to the Full Data Privacy and Integrity Advisory Committee Version 1.0 Department of Homeland Security, 2006.

39. G. M. Koien, "RFID and Privacy", Telenor R&I (Network Technologies Group), February 2007, [online] Available: http://www.telenor.comlen/resources/images/077-083_RFID-Privacy_tcm28-36799.pdf.

40. "Trusted Traveler Programs", US Department of Homeland Security: U.S. Customs and Border Protection, December 2009, [online] Available:

41. S. Bono, M. Green, A. Stubblefield, A. Rubin, A. Juels, M. Szydlo, Analysis of the Texas Instruments DST RFID, May 2007, [online] Available:

42. "Benetton to Tag 15 Million Items", RFID Journal, March 2003, [online] Available: http://www.rfidjournal.comlarticle/view/344/1/1.

43. "RFID blocking sleeves and holders", Smart Card Focus, 2010, [online] Available: http://www.smartcardfocus.comlshop/ilp/se~102/p/index.shtml?gclid=CLWixrPx36ECFQcupAodL1BuKA.

44. "RFID Chip Market to Grow 63% Annually Through 2011", RFID Update, February 2008, [online] Available: http://www.rfidupdate.comlarticles/index.php?id=1538.

45. "Welcome to LifeChip", Destron LifeChip, 2010, [online] Available:

46. "Companion Animals Act 1998", Compulsory microchipping in NSW, 1998, [online] Available:

47. J. Siden, A. Koptyug, M. Gulliksson, H.-E. Nilsson, "An Action Activated and Self Powered Wireless Forest Fire Detector" in Wireless Sensor and Actor Networks, Boston: Springer, pp. 1571-5736, December 2007.

48Positive ID, 2010, [online] Available: http://positiveidcorp.comlabout-us.html.

49. J. Diamond, Guns Germs and Steel: A Short History of Everybody for the Last 13000 Years, London: Vintage, 1997.

50. "Social Consequences and Effects of RFID Implants?", SlashDot, May 2006, [online] Available:

51. J. Scheeres, "They Want Their ID Chips Now", Wired, June 2002, [online] Available: http://www.wired.comlpolitics/security/news/2002/02/50187.

52. K. Michael, M. G. Michael, R. Abbas, "The Dilemmas of Using Wearable Computing to Monitor People: An Extended Metaphor on the Tracking of Prison Inmates and Parolees", Australia and New Zealand Society of Criminology Conference: Crime and Justice Challenges in the 21 st Century, 2009.

53. M. C. O'Connor, "Tag Implants May Be Dangerous for Security Apps Says Group", RFID Journal, August 2006, [online] Available: http://www.rfidjournal.comlarticle/articleview/2607/2/1/.

54. A. Friggieri, K. Michael, M. G. Michael, "The Legal Ramifications of Microchipping People in the United States of America-a State Legislative Comparison", International Symposium on Technology and Society, 2009.

55. Simitian. Identification devices: subcutaneous implanting", Filed with Secretary of State, vol. SB 362, October 2007.

56. K. Michael, M. G. Michael, "The social cultural religious and ethical implications of automatic identification", Proceedings of the Seventh International Conference in Electronic Commerce Research, 2004.

57. M. G. Michael, "The Canonical Adventure of the Apocalypse of John: An Eastern Orthodox Perspective" in Faculty of Theology and Philosophy vol. Doctor of Philosophy, Brisbane, Queensland:, 2002.

58. G. Nikolettos, We the People Will Not Be Chipped, 2010, [online] Available: http://www.wethepeoplewillnotbechipped.comlmain/news.php.

59. D. Welch, "US raises full body scanners in fly-by visit over terrorism", Sydney Morning Herald, January 2010, [online] Available:

60. A. Graafstra, "I'm in “Tagged” a New Canadian Documentary", Blog, September 2009, [online] Available:

61. A. Stoica, "Towards Recognition of Humans and their Behaviors from Space and Airborne Platforms: Extracting the Information in the Dynamics of Human Shadows", ECSIS Symposium on Bioinspired Learning and Intelligent Systems for Security, 2008.

62. K. Michael, A. Masters, "Realised Applications of Positioning Technologies in Defense Intelligence" in H. Abbass, D. Essam, Applications of Information Systems to Homeland Security and Defense, Hershey, USA:Idea Group Publishing Press, pp. 167-195, 2006.

63. K. Michael, A. Masters, "The Advancement of Positioning Technologies in Defense Intelligence" in H. Abbass, D. Essam Applications of Information Systems to Homeland Security and Defense, Hershey, USA:Idea Group Publishing, pp. 196-220, 2006.

64. D. McCullagh, "Feds push for tracking cell phones", cnet news, February 2010, [online] Available:


Radiofrequency identification, Eyes, RFID tags, Transponders, Implants, Radio frequency, Animals,Supply chains, Mobile handsets, Health and safety, social sciences, radiofrequency identification, chip implant, sociotechnical issues, humancentric RFID implantee subculture, Amal Graafstra,radiofrequency identification tags

Citation: Amal Graafstra, Katina Michael, M.G. Michael, 2010, "Social-technical issues facing the humancentric RFID implantee sub-culture through the eyes of Amal Graafstra", International Symposium on Technology and Society, 7-10 June, 2010, pp. 498 - 516 , Wollongong, Australia.

Control, trust, privacy, and security: LBS


Location-based services (LBS) are those applications that utilize the position of an end-user, animal, or thing based on a given device (handheld, wearable, or implanted), for a particular purpose. LBS applications range from those that are mission-critical to those that are used for convenience, from those that are mandatory to those that are voluntary, from those that are targeted at the mass market to those that cater to the needs of a niche market. Location services can be implemented using a variety of access media including global positioning systems and radio-frequency identification, rendering approximate or precise position details.

The introduction of location-based services, which are growing in sophistication and complexity, has brought with it a great deal of uncertainty. Unaddressed topics include: accountability for the accuracy and availability of location information, prioritization and location frequency reporting, the user's freedom to opt-in and opt-out of services, caregiver and guardian rights and responsibilities, the transparency of transactions, and the duration of location information storage. Some of these issues are the focus of court cases across the United States, usually between service providers and disgruntled end-users or law enforcement agencies and suspected criminals.

While we can wait for the courts to set precedents and then take legislative action to learn about how we should act and what we should accept as morally right or wrong, this is only a small part in considering the emerging ethics of an innovation such as location-based services. Laws, similar to global technical standards, usually take a long time to enact. A more holistic approach is required to analyze technology and social implications. This article uses scenarios, in the form of short stories to summarize and draw out the likely issues that could arise from widespread adoption of LBS. It is a plausible future scenario, grounded in the realism of today's technological capabilities.

Role of Scenarios in the Study of Ethics

Articles on ethics in engineering and computing, for the greater part, have been about defining, identifying and describing types of ethics, and emphasizing the importance of ethics in the curriculum and the workplace. A small number of ethics-related studies more directly concerned with invention and innovation consider the possible trajectories of emerging technologies and their corresponding social implications [1], [2]. Within the engineering field, these studies commonly take on the guise of either short stories or case-based instruction [3], [4]. This article uses scenario planning to identify the possible risks related to location-based services in the context of security and privacy. While “day-in-the-life scenarios” have been popular in both human-computer interaction and software engineering studies, they have not been prevalent in the ethics literature [5].

When is a person sufficiently impaired to warrant monitoring?

The most well-known usage of stories related to ethical implications of technology have been constructed by Richard G. Epstein [6]. His 37 stories in the Artificial Intelligence Stories Web are organized thematically based on how the human experience is affected by the technology [7]. Of fiction, Epstein writes that it is “a great device to help one envision the future and to imagine new concepts and even applications” [8]. His Silicon Valley Sentinel-Observer's Series ran as a part of Computers and Society [9]. John M. Artz has written about the importance of stories advancing our knowledge when exploring areas where we do not fully understand a phenomenon [10]. Artz calls stories and our imagination “headlights” that allow us to consider what might lie beyond: “[c]onsider imagination as the creative capacity to think of possibilities. Imagination lets us see the world, not as it is, but as it could be. And seeing the world as it could be allows us to make choices about how it should be.” In 1988, Artz indicated the shortage in short stories in the field, and this paper addresses the shortage by focusing on LBS.

The definition of a scenario used in this paper is “[a]n internally consistent view of what the future might turn out to be” [11]. Scenarios can be used to combine various separate forecasts that pertain to a single topic [12], designed to provide an overall picture of a possible future, and to describe this future in such a way that it is accessible to a layperson in the subject. According to Godet a scenario “must simultaneously be pertinent, coherent, plausible, important and transparent” [13].

The Track, Analyze, Image, Decide, Act (TAIDA) scenario planning framework is used here with respect to LBS to i) identify aspects of the current situation that may have an impact on the future under consideration; ii) deliberate on the possible future consequences of the aspects identified in tracking; iii) approach possible changes intuitively to create a plausible future, “to create not only an intellectual understanding but also an emotional meaning,” iv) determine what should be done about a given scenario in response to issues raised, and v) offer recommendations that will address these issues [14]. Analysis of the future scenario presented will be conducted using deconstruction to draw out the social implications. Deconstruction is an approach to literary analysis that aims “to create an interpretation of the setting or some feature of it to allow people… to have a deeper understanding” [15].

The Roman philosopher Seneca said: “[t]here is no favorable wind for the man who knows not where he is going” [13]. There is certainly merit in exploring the potential effects of LBS before they occur. As Michael and Michael highlight: “[m]ost alarming is the rate of change in technological capabilities without a commensurate and involved response from an informed community on what these changes actually “mean” in real and applied terms, not only for the present but also for the future” [16]. “[T]oday's process of transition allows us to perceive what we are losing and what we are gaining; this perception will become impossible the moment we fully embrace and feel fully at home in the new technologies” [17].

The scenario “Control Unwired” continues five short stories and is set in Australia. The critical analysis that follows is also presented within a predominantly Australian context.

Control Unwired

Vulnerability-The Young Lady

The street appeared to be deserted. Kate wasn't surprised – this part of town always quieted down at night, especially on weekday evenings like this one. There wasn't much around except office buildings and coffee shops that served to provide a steady stream of caffeine to the office workers.

If a person's resistance is bypassed or circumvented, their adaptive capacities can be overloaded, inducing feelings of desperation and helplessness.

Kate fished her smart phone out of the pocket of her grey suit jacket [18], [19]. Pressing a few buttons, she navigated through the on-screen menu to the Services option, then to Call a Taxi [20]. The device beeped at her, flashing the message: No signal available [21].

Kate swore, shoving the PDA back into her bag. The surrounding buildings must have been blocking the GPS signal [22]. She knew she needed to get to a more open area.

What a pain, she thought. They overload me with cases, expect me to stay late, and then the gadget they give me to get home doesn't work.

Although Kate was irritated more than anything else, there was a niggling sort of apprehension in the pit of her stomach. She felt alone – very alone, and not at all comfortable being by herself, at eleven in the evening, in a deserted place.

Shaking off the uneasiness, she berated herself. Get a grip, Kate. You're not a child.

As Kate strode off, a dark shadow detached from a nearby alleyway. It followed, silently, at a distance, keeping out of the dim pools cast by the streetlights.

Unfortunately, Kate didn't know which direction she should go to find a clear space for her phone to get a fix on her location.

If I keep heading the same way, she thought, I'm bound to find somewhere sooner or later.

The surrounding structures were slightly lower here, the taller office blocks just down the road. As Kate walked, the shadow some way behind flickered in the wind, as though it were wearing a long coat. It followed stealthily, steadily decreasing the distance between itself and Kate.

Suddenly, Kate's phone bleeped for attention. Kate pulled it out of her bag again and read the message on the screen: Signal acquired.

“Finally,” she breathed. Quick fingers navigated back to the Call a Taxi command. The phone gave a comforting reassurance that a taxi was on its way, with an estimated arrival time of less than a minute [23].

The shadow hung back, unsure, watching.

Within thirty seconds of making the call, a taxi veered out of nowhere and pulled to an abrupt stop alongside Kate. She opened the door and slid into the back seat.

As the taxi pulled away, the shadow shifted slightly and melted back into the darkness.

Liberty-The Husband and His Wife

The next day, the sun filtered into an east-facing bathroom window, where a man stood studying himself in the mirror.

Slight lines crinkled the skin near his eyes and mouth. His hair was still quite thick and healthy, but flecked with the salt-and-pepper grey of an aging man. Although Colin was well past his sixtieth birthday, he could have easily passed for a man in his fifties.

Suddenly, the telephone rang. Colin paused for a moment, listening – the ring only sounded in the bathroom [24]. The kitchen, bedroom, and lounge room were all silent.

“Even the damn phone knows where I am,” he muttered, shaking his head. He touched the hard lump of the RFID tag that was stitched into the hem of his shirt [25], [26]. “Helen, not again!”

Colin stabbed at an unobtrusive button on the bathroom wall, [27] and his reflection instantly gave way [28] to the face of an attractive woman with bobbed blonde hair [29] – Helen, his wife, calling from the airport in Hong Kong.

“Oh sweetheart, you look tired.” Helen sounded concerned.

Colin shrugged. “I don't feel tired. I think I just need to get some fresh air.”

“Open the window, then. It might make you feel better.”

Colin thought that what would make him feel better was a nice long walk without his wife checking up on him every five minutes.

“You haven't been to the cupboard yet to take your morning medicines,” Helen said.

“Why don't you stop pussyfooting around and just inject me with one of those continuous drug delivery things?” [30], Colin frowned.

Helen smiled. “Great idea,” she teased. “We could put a tracking chip in it too. Two birds, one stone” [31].

“At least then I wouldn't have to wear this stupid bracelet [32]. They're made for kids [33], Helen.” Colin knew his wife was joking, but the truth was that he often did feel like a recalcitrant child these days.

“Well,” Helen replied, “If you didn't insist on being so pig-headed, you wouldn't have to wear it. I was terrified when you collapsed. I'm not going to let it happen again. This way I know you're not gallivanting about without someone to look after you.”

“Ever considered that I can take care of myself? I'm not a child.”

“No, you're not. And you're not a young man either,” Helen admonished. “You need to accept that with your condition, it's just not safe to be going off by yourself. What if something happened to you? Who would know? How would we find you?”

“I feel like a prisoner in my own home, Helen. I can't even take the thing off without you knowing about it. You know they use these for prisoners?”

“Parolees, dear. And they're anklets.” She leaned in closer to the screen. “Someone needs to take care of you, Colin. If you won't, I'll have to do it myself.”

Colin sighed. “You just don't understand what it's like to be getting… older. Not being able to do everything you used to. Being betrayed by your own body. It's bad enough without you babying me along like some kind of octogenarian invalid.”

“Well, I guess that's the downside to marrying a woman almost twenty years younger than yourself,” Helen grinned.

“The only downside.” Colin smiled back at her, but his heart wasn't really in it. They had been through this argument countless times before.

He changed the subject. “Heard from our dear daughter lately? Or Scott?”

“Kate called me last night. She's doing well.”

“How's her new job?” Colin asked.

“Well, she says she enjoys it, but she's working very long hours,” Helen replied.

“And I bet you're worried about her being alone in the city at night for five minutes,” Colin said.

Helen gave a self-conscious smile. “It's not a very nice part of town. I'll feel much better about her working late when the firm moves closer to the inner city.”

“And Scott?”

“Haven't heard from him. He's back in Sydney now, though. I wish he'd call.”

“Maybe if you weren't always pestering him to marry his girl from Melbourne, he'd call more,” Colin grinned.

Helen glanced up, away from the screen.

“Sweetheart, I have to go – they've just given the final boarding call for my flight. Enjoy the rest of your day. I'll see you when I get home tonight.” She blew a rather distracted kiss at the screen, then it went blank.

Colin's shoulders sagged. Alone again.

He shuffled into the kitchen to make breakfast. Helen had left him skim milk and pre-packaged porridge oats.

“Wow,” he muttered. “Cosmic Blueberry or Bananarama? Such decisions.”

Just as Colin was finishing off the last few spoonfuls, the watch on his wrist emitted a low beep. He glanced at the screen: Low battery – critical.

Colin smiled. The device had been flashing low battery messages intermittently since yesterday evening. It had less than three days' standby time, and being on a business trip, Helen wasn't around to make sure it got recharged [34].

The screen on the little device winked out.

Munching on his porridge, Colin reached over to the cutlery drawer and took out the kitchen scissors. Very carefully, he snipped out a neat little rectangle from the hem of his shirt. The RFID tag came with it.

He swallowed down the rest of his breakfast and tossed the tag onto the counter.

Colin was going for a walk.

No alert went out to Helen. No neighbors came hurrying to see what he was doing. He reveled in the possibility of heading out without someone watching his every move [35].

Colin wandered off, his own man, if only for a morning.

Association-The Friends and Colleagues

“Hey Janet. Sorry I'm late.” Scott slid into the other seat at the table.

Janet sighed, pushing a latte and a sandwich towards him. She'd already finished her coffee. She gestured to her PDA. “These gadgets do everything. They compare our schedules, pick a place convenient to both of us, make sure there's something vegetarian on the menu for me, and book a table. Pity they can't get you here on time too.”

“I'm sure it's on the horizon,” Scott joked. “So how's life in the Sydney office?”

“All right. The weather makes a nice change. How about your parolees?”

Scott laughed. “There's a lot more of them. In Melbourne I had fifty or sixty cases at once. Now I've been allocated more than a hundred.” He bit into his sandwich. “With less parole officers able to handle more cases, I guess I'm lucky to have a job,” he continued with his mouth full [36].

Janet raised her eyebrows. “With a lot of women intolerant of bad table manners, you're lucky to have a girlfriend. I assume the workloads are greater because they use those chips here?”

“The caseload is greater, the workload is the same – yeah, because of the chips” [37]. He smiled. “It's crazy that New South Wales is already trialing these tracking implants, while Victoria's only recently got a widespread implementation of the anklets [38]. They've been around commercially for years. Mum's got Dad wearing a tracking watch now, for peace of mind after the whole angina scare.

“But the implants are much better,” Scott continued. “Who wants a chunky anklet or bracelet that makes you look like a collared freak? I'll bet it's really disconcerting having people stare at you suspiciously in the street, knowing that you're a criminal. It kind of defeats the purpose of parole – the idea is rehabilitation, reintegration under supervision. That's why the implants are so good – there's no stigma attached. No one can even tell you have one. And they're harder to remove, too.”

“I don't see what the big deal is,” Janet replied. “Why not just keep people under lock and key?”

“Resources. It costs a lot to keep someone imprisoned, but the cost drops significantly if you imprison them in their own home instead [39]. It's about overcrowding, too – jails everywhere have had an overcrowding problem for years [40].

Can it be considered reasonable to impinge upon the freedom of someone who is merely suspected of committing a crime?

“I also think electronic monitoring and parole are much better in terms of rehabilitation,” Scott went on. “People can change [41]. Often they've committed a fairly minor crime, then they go to prison, get mixed up with worse crowds [42]–[43][44]. It can be pretty rough in there. There is certainly a danger that by imprisoning people with ‘harder’ criminals, you run the risk of corrupting them further and exacerbating the problem [40].

“On parole, they can still go to work and earn money, be productive members of society, get their lives back [44], [45]. But they're watched, very closely – the tracking systems alert us if anything looks off. It's imprisonment without prisons.”

Janet smiled. “That's very Alice in Wonderland. When the Cheshire Cat disappears – how does it go? ‘I've often seen a cat without a grin, but a grin without a cat is the most curious thing I ever saw in all my life!'”

Scott laughed. “I suppose you could compare it to that.” He noted Janet's skeptical look. “It's not like we're sending people out of jails willy-nilly. There is a pretty thorough system in place to determine who gets paroled and who doesn't.”

“So how does that work?” asked Janet.

“Well, a while ago it was mainly based on crime-related and demographic variables. We're talking stuff like what sort of offense they're doing time for, the types of past convictions on their record, age, risk of re-offending” [46].

She nodded.

“Now a bunch of other things are looked at too,” he continued, finishing off his sandwich. “It's a lot more complex. Psychological factors play a big part. Even if someone displays fairly antisocial traits, they're still considered pretty low risk as long as they don't also show signs of mental illness” [47].

“So prisons are the new asylums?” Janet frowned.

“Not quite but I see your point,” Scott admitted.

“What about terrorists?” Janet argued. “How can you guarantee that there won't be another incident like the Brisbane rail bombings”[48]?

“Like I said, anyone considered really dangerous is still kept in a regular prison,” Scott said. “All the major landmarks and places people congregate in Sydney are tagged anyway [49]. There's no way a convicted terrorist would get within a hundred meters of anything worth attacking.”

Janet raised her eyebrows, unconvinced. She thought of the newspaper reports about security breaches of public places that had been linked to professional cybervandals. As far as she was concerned, no new technology was the silver bullet.

Scott continued, “And you know that governmental powers now allow ‘persons of interest’ to be implanted as well.”

Janet shook her head. “I'm all for preventing terrorist attacks. But implanting people who haven't committed a crime? How far will they take it? What if the government decided that they should just track everyone, to be on the safe side?”

Scott shrugged. “I guess we just need to find a nice balance between personal freedom and national security.”

He glanced at his watch and pushed his chair back. “I need to get back to work,” he said apologetically.

Policing-The Officer and the Parolee

Scott paused on the landing in front of Doug's apartment and steeled himself. Doug was his last visit of the day. Scott was a fairly likeable guy and had a rapport with most of his cases, but Doug, convicted of aggravated sexual assault, was different [50].

Scott knocked on the door.

A few seconds passed, then it opened a fraction and a stubbled face peered out. Doug wore a stained long-sleeved shirt and ratty jeans.

“Scott,” he sneered. “So nice of you to drop by.”

“Let's just do this, Doug.”

Scott followed Doug into the living room. He pulled out a small device and waved it up and down the man's left arm. It beeped and Scott checked the screen.

“Your chip seems fine,” he said. “Just a routine check – we like to do one every now and then to make sure everything's okay. Congratulations on your new job, by the way. How do you like house painting?”

“My true bloody calling,” Doug leered.

“Er… great. Keep it up then. With good behavior like this you'll be done in no time.”

Scott felt relieved that he would no longer have to sift through Doug's daily tracking logs.

Doug just smiled.

Duplicity-The Victim

Doug waited more than two hours after Scott left before removing his shirt. He peeled off the electrical tape covering an ugly, ragged scar on his upper arm [51]. The scar wasn't from the chip's implantation. It was created by the deep cut Doug's heavily pierced cyberpunk friend had made to remove it [52].

The tiny chip – smaller than a grain of rice – was stuck to the back of the tape. Gingerly, Doug set it on the table in front of the TV and smiled. His chip was having a night in.

He was going out.

Doug pulled his shirt back on and shrugged into a long coat.

He knew there would be a young woman in a grey suit leaving her office soon. She worked at the law firm that was hot stuff in the news. Stupid really, he thought, that she's not afraid to wander the streets in that part of town at night, alone. A Smart girl like that should know better.

The stairwell was quiet. He slipped out into the darkness, a shadow among the other shadows.

He wanted to pay that attractive little lawyer a visit before she caught her taxi home.

Critical Analysis

Legal and Ethical Issues

According to Ermann and Shauf, our “ethical standards and social institutions have not yet adapted… to the moral dilemmas that result from computer technology” [53]. This has a great deal to do with the way Helen uses the LBS technologies available to her. In Liberty, Helen obviously cares about her husband and wants what is best for his health. She is willing to “help” Colin look after himself by monitoring him and restricting the activities she allows him to participate in, especially when he is alone. It is not too difficult to imagine this happening in the real world if LBS becomes commonplace. It is also conceivable that, for some people, this power could be held by a hospital or health insurance company. However, Helen fails to balance her concern for her husband's physical welfare with his need to be an autonomous being. Although LBS technologies are readily available, perhaps she has not completely thought through her decision to use these technologies to monitor Colin, even if it is ostensibly for his own good. It could even be seen as selfish.

The current climate is indicative of individuals' willingness to relinquish their privacy (or at least someone else's) for the sake of impenetrable security.

Consideration of legal issues is also important – it does not appear that there is any specific Australian legislation that covers the unique possibilities of LBS tracking. One situation that is likely to appear with more frequency is people using LBS technologies to monitor loved ones “for their own good.” Several issues are raised here. When is a person sufficiently impaired to warrant such monitoring? Should their consent be necessary? What if they are considered to be too impaired to make a rational decision about monitoring?

Autonomy is an important part of a person's identity. Resistance to a situation is often unconsciously employed to “preserve psychically vital states of autonomy, identity, and self-cohesion from potentially destabilizing impingements” [54]. If a person's resistance is bypassed or circumvented, their adaptive capacities can be overloaded, inducing feelings of desperation and helplessness. The natural reaction to this is to exert an immediate counterforce in an attempt to re-establish the old balance, or even to establish a new balance with which the individual can feel comfortable [54].

These ideas about autonomy, identity and resistance are demonstrated in Liberty through Colin. He experiences feelings of helplessness and vulnerability because of his loss of autonomy through constant LBS monitoring. His unsupervised walk can be seen as an attempt to redress the balance of power between himself and Helen. With these issues in mind, perhaps the kindest and least disruptive way to implement a monitoring program for an aging individual is to develop a partnership with that person. In this sort of situation, LBS tracking can be a joint process that “is continually informed by the goal of fostering… autonomy” [54].

Another significant legal and ethical issue is that of monitoring people such as those suspected of being involved in terrorist activities. As hinted at in Association, this is not mere fancy – the Australian Government, for example, has passed new anti-terrorism laws that, among other things, would give police and security agencies the power to fit terror suspects with tracking devices for up to 12 months [55].

This kind of power should give rise to concern. Can it be considered reasonable to impinge upon the freedom of someone who is merely suspected of committing a crime? For tracking implants especially, do governments have the right to invade a personal space (i.e., a person's body) simply based on premise?

Criminals give up some of their normal rights by committing an offense. By going against society's laws, freedoms such as the right to liberty are forfeited. This is retributivism (i.e., “just deserts”). The central idea is proportionality: “punishment should be proportionate to the gravity of, and culpability involved in, the offense” [40]. With no crime involved, the punishment of electronic monitoring or home detention must be out of proportion.

The threat of terrorist attacks has led the Australian Government to propose giving itself extraordinary powers that never could have been justified previously.

With measures such as those in Australia's counter-terrorism laws, there is obviously a very great need for caution, accountability, and review in the exercise of such powers. Gareth Evans, the former Australian Labor foreign minister, commented on the laws by saying:

“It is crucial when you are putting in place measures that are as extreme in terms of our libertarian traditions as these that there be over and over again justification offered for them and explanations given of the nature and scale of the risk and the necessity… it is a precondition for a decent society to have that kind of scrutiny” [56].


The July 2005 London subway bombings are the justification offered repeatedly by Australian Prime Minister John Howard for the new laws, reinforced by Australian Secret Intelligence Organization (ASIO) director-general Paul O'Sullivan. However, this “justification” ignores the reality that “the London bombers were ‘clean skins' who had escaped police notice altogether” [57]. Tagging suspicious people cannot keep society completely safe.

We do not make a judgment on whether pre-emptive control legislation is proper or not. We suggest, however, that the laws recently enacted by the Australian Federal Government (and agreed to by the Australian States) could be indicative of a broader trend.

John Howard said that “in other circumstances I would never have sought these new powers. But we live in very dangerous and different and threatening circumstances… I think all of these powers are needed” [58]. Could the same argument be used in the future to justify monitoring everyone in the country? If pre-emptive control is a part of government security, then widespread LBS monitoring could be the most effective form of implementation.

Without suggesting the potentially far-fetched Orwellian scenario where draconian policies and laws mean that the entire population is tracked every moment of their lives, there is an argument to be made that the current climate is indicative of individuals' willingness to relinquish their privacy (or at least someone else's) for the sake of impenetrable security.

Social Issues

Control emerges as a significant theme in the scenario Control Unwired. Even in LBS applications that are for care or convenience purposes, aspects of control are exhibited. The title reflects the dilemma about who has control and who does not. For example, in Vulnerability, Kate experiences a loss of control over her situation when her GPS-enabled smart phone does not work the way she wants it to work, but a sense of control is restored when it is functioning properly again. Helen has control over Colin in Liberty, and in turn Colin has little control over his own life. In both Association and Policing we see how Scott uses LBS every day as a control mechanism for parolees. Finally, in Duplicity, the question arises whether faith in this sort of control is fully justified.

Trust is a vitally important part of human existence. It develops as early as the first year of life and continues to shape our interactions with others until the day we die [59]. In relationships, a lack of trust means that there is also no bonding, no giving, and no risk-taking [60]. In fact, Marano states:

“[w]ithout trust, there can be no meaningful connection to another human being. And without connection to one another, we literally fall apart. We get physically sick. We get depressed. And our minds… run away with themselves” [59].

An issue that arises in Liberty is that of trust, recalling Perolle's notion of surveillance being practiced in low-trust situations and the idea that the very act of monitoring destroys trust [61]. We can see this happening in the Colin/Helen relationship. Helen does not trust Colin enough to let him make his own decisions. Colin does not trust Helen enough to tell her he is going out by himself, without any kind of monitoring technology. He resents her intrusion into his day-to-day life, but tolerates it because he loves his wife and wants to avoid upsetting her. Their relationship could be expected to become increasingly dysfunctional if there is a breakdown of trust. It is near impossible to predict the complex effects of LBS when used to track humans in this way, especially as each person has a different background, culture, and upbringing. However, if Perolle [61] and Weckert [62] are agreed with, these types of technological solutions may well contribute to the erosion of trust in human relationships – what would this entail for society at large? Freedom and trust go hand-in-hand. These are celebrated concepts that have been universally connected to civil liberties by most political societies.

Technological Issues

There is a widely held belief that it is how people use a technology, not the technology itself, that can be characterized as either good or bad. People often see technology as neutral “in the sense that in itself it does not incorporate or imply any political or social values” [63]. However, there are other researchers who argue that technology is not neutral because it requires the application of innovation and industry to some aspect of our lives that “needs” to be improved, and therefore must always have some social effect [63]. The LBS applications in the scenario all appear to show aspects of control. This would suggest that the technology itself is not neutral – that LBS are designed to exercise control.

Control Unwired seems to echo Dickson's argument that technology is not neutral because of its political nature: “dominating technology reflects the wishes of the ruling class to control their fellow men” [63]. We can certainly see elements of this idea in the scenario. All of the LBS functions depicted are about control, whether it be control over one's own situation (Vulnerability), caring control of a loved one (Liberty), or forced control over parolees (Association, Policing, and Duplicity). These situations imply that LBS is not neutral, and that the technology is designed to enhance control in various forms.

Some believe that technology is the driving force that shapes the way we live. This theory is known as technological determinism, one of the basic tenets of which is that “changes in technology are the single most important source of change in society” [64]. The idea is that technological forces contribute to social change more than political, economic, or environmental factors. The authors would not go so far as to subscribe to this strongest sense of technological determinism doctrine. The social setting in which the technology emerges is at least as important as the technology itself in determining how society is affected. As Braun says: “[t]he successful artifacts of technology are chosen by a social selection environment, [like] the success of living organisms is determined by a biological selection environment” [65]. Technologies that fail to find a market never have a chance to change society, so society shapes technology at least as much as it is shaped by technology. In this light, Hughes's theory of technological momentum is a useful alternative to technological determinism: similar in that it is time-dependent and focuses on technology as a force of change, but sensitive to the complexities of society and culture [66].

Technological potential is not necessarily social destiny [67]. However, in the case of LBS, it is plausible to expect it to create a shift in the way we live. We can already see this shift occurring in parents who monitor their children with LBS tracking devices, and in the easing of overcrowding in prisons through home imprisonment and parole programs using LBS monitoring.

As described previously, the threat of terrorist attacks has led the Australian Government to give itself extraordinary powers that never could have been justified previously. In this situation, LBS has enabled the electronic monitoring of suspicious persons; however, it is not the technology alone that acts as the impetus. Pre-emptive electronic tracking could not be put in place without LBS. Neither would it be tolerated without society believing (rightly or not) that it is necessary in the current climate.

The scenario also demonstrates that technology and society evolve at least partially in tandem. In Association, through the conversation between Scott and Janet, we learn that LBS tracking implants were not introduced simply because they were technically feasible. The reasons for their use were to reduce overcrowding in prisons and to mitigate the burden of criminals on the ordinary taxpayer. Social and economic factors, as well as technological ones, contributed to this measure being taken.

Although technology is not the sole factor in social change, and arguably not the most important, LBS are gaining momentum and are likely to contribute to a shift in the way we live. This can be seen both in the scenario and in real-life examples today. Throughout Control Unwired we can see LBS becoming an integral part of daily life. If this does happen, consideration must be given to what will happen if the technology fails – which it inevitably will. No technology is completely perfect. There are always shortcomings and limitations.

Examples of deficiencies in LBS technologies can be found scattered throughout the scenario. In Vulnerability, Kate appears to be over-reliant on LBS (why does she not simply call a taxi from her office before leaving?) and when the technology fails, it creates a potentially dangerous situation. Even more dangerous circumstances occur in Duplicity. Doug, a convicted sex offender, is able to break his curfew without anyone knowing. Perhaps measures could be implemented to stop such breaches from going undetected, but that would not stop them from happening altogether. One U.S. study found that about 75 percent of electronically monitored “walk offs” were re-apprehended within 24 hours [45]. That means a quarter went free for more than a day – plenty of time to commit other offences. And, although the offender may be caught and punished, it is difficult to remedy the damage done to an individual who is robbed or assaulted.

And no technology is completely fail-safe. Even electricity, a mainstay of daily life, can suddenly fail, with socially and economically devastating effects. Most of Auckland, New Zealand, went without power for five weeks during a massive blackout in 1998 [68]. A 1977 electricity outage in New York led to widespread looting, arson and urban collapse [69]. If we become as reliant on LBS as we have become on other technologies like electricity, motor vehicles, and computers, we must be prepared for the consequences when (not if) the technology fails.

Risk to the Individual Versus Risk to Society

Any technology can be expected to have both positive and negative effects on individuals and on the wider community. Emmanuel Mesthane of Harvard's former Technology and Society Program wrote: “[n]ew technology creates new opportunities for men and societies and it also generates new problems for them. It has both positive and negative effects and it usually has the two at the same time and in virtue of each other” [70]. From Table I, it is obvious that there is an inherent trade-off between the interests of the individual and the interests of society as a whole: the privacy of the individual is in conflict with the safety of the broader community. As G.T. Marx reflects, “[h]ow is the desire for security balanced with the desire to be free from intrusions” [71]? This work is certainly not the first to allude to this issue. For example, Kun has said that “perhaps one of the greatest challenges of this decade will be how we deal with this theme of privacy vs. national security” [72].

Table I  Positives and negatives of LBS for different user types

Table I Positives and negatives of LBS for different user types

The original contribution of this article is that the dilemma has been related specifically to LBS, under the privacy-security dichotomy [73]. Here, each side of the dichotomy is divided into three key components that combine to greatly magnify risk. Removing one or more components for each set decreases the privacy or security risk. Where more elements are present in conjunction, the risk is increased.

Significant privacy risk occurs when the following factors are present (Fig. 1):

Fig. 1 Privacy Risk

Fig. 1 Privacy Risk

  • Omniscience — LBS tracking is mandatory, so authorities have near-perfect knowledge of people's whereabouts and activities.

  • Exposure — security of LBS systems is imperfect, leaving them open to unauthorized access.

  • Corruption — motive exists to abuse location-related data. This includes unauthorized or improper changes, thus compromising content integrity.

It is not difficult to see why the danger in this privacy-risk scenario is so great. A nation with “all-knowing” authorities means that a large amount of highly sensitive information is stored about all citizens in the country. Security of electronic systems is never foolproof. And, where there is something to be gained, corrupt behavior is usually in the vicinity. The combination of all three factors creates a very serious threat to privacy.

Significant security risk occurs with the following conditions (Fig. 2):

  • Limitedness — authorities have limited knowledge of people's activities.

  • Vulnerability — security of individuals and infrastructure is imperfect.

  • Fraudulence — motive exists to commit crimes.

Fig. 2 Security Risk

Fig. 2 Security Risk

This security-risk dimension is a life situation that people have to contend with in the present day: limitedness, vulnerability, and fraudulence. Law enforcement authorities cannot be everywhere at once, nor can they have instant knowledge of unlawful activity. Security of infrastructure and people can never be absolute. In addition, there are always individuals willing to commit crimes for one reason or another. These factors merge to form a situation in which crimes can be committed against people and property relatively easily, with at least some chance of the perpetrator remaining unidentified.

As mentioned above, the security-risk half of the dichotomy typifies our current environment. However, the majority of society manages to live contentedly, despite a certain level of vulnerability and the modern-day threat of terrorism. The security-risk seems magnified when examined in the context of the LBS privacy-security dichotomy. LBS have the potential to greatly enhance both national and personal security, but not without creating a different kind of threat to the privacy of the individual. The principal question is: how much privacy are we willing to trade in order to increase security? Is the privacy-risk scenario depicted above a preferable alternative to the security-risk society lives with now? Or would society lose more than it gains? And how are we to evaluate potential ethical scenarios in the context of utilitarianism, Kantianism, or social contract theory?

Major Implications

The issues of control, trust, privacy and security are interrelated (Table II). As discussed above, increased control can impair or even destroy trust; i.e., there is no need to be concerned with trusting someone when they can be monitored from afar. In contrast, increased trust would normally mean increased privacy. An individual who has confidence in another person to avoid intentionally doing anything to adversely affect them, probably does not feel the need to scrutinize that person's activities.

Table II  Unanswered questions in LBS

Table II Unanswered questions in LBS

Privacy requires security as well as trust. A person's privacy can be seriously violated by a security breach of an LBS system, with their location information being accessed by unauthorized parties. The other effect of system security, however, is that it enhances control. A secure system means that tracking devices cannot be removed without authorization, therefore, control is increased. Of course, control and privacy are mutually exclusive. Constant monitoring destroys privacy, and privacy being paramount rules out the possibility of LBS tracking. These relationships are summarized in Fig. 3.


The most significant implication of the work presented here is this: the potential for LBS to create social change raises the need for debate about our current path and consideration of future probabilities. Will the widespread application of LBS significantly improve our lives? Or will it have negative irreversible social effects?

Technological progress is not synonymous with social progress. Social progress involves working towards socially desirable objectives in an effort to create a desirable future world [65]. Instead of these lofty ideals, technological progress is based on what is technically possible. However, there is a difference between what can be done and what should be done – the relentless pursuit of technological advancement for its own sake is arguably a pointless exercise. Do we really need more electronic gadgets in our daily lives? As Kling states:

“I am struck by the way in which the news media casually promote images of a technologically rich future while ignoring the way in which these technologies can add cost, complexity, and new dependencies to daily life” [74].

In the Association section of the scenario, Janet's comment about Alice's Adventures in Wonderland can be seen as more than just a superficial remark. In the book, Alice has the following conversation with the Cat:

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don't much care where—” said Alice.
“Then it doesn't matter which way you go,” said the Cat [75].

Martin Gardner says that John Kemeny, author of A Philosopher Looks at Science, compares Alice's question and the Cat's answer to the “eternal cleavage between science and ethics” [75]. The same could be said of LBS technologies and possible future applications. New technologies provide exciting opportunities, but human decision-making based on social and ethical considerations is also needed in determining the best path to follow. Technology merely provides us with a convenient way to reach the destination. Without a sense of direction, where might we find ourselves? And where is the logic behind a “directionless” destination? There is clearly a serious need for thought and discussion about how we want LBS to be used in the wider context of its potential application.

Besides developing a sense of purpose for the use of LBS, we need to examine very carefully the possibility of the technology having unintended side effects such as the breakdown of trust and abuse of its application. Certainly, the potential effect of unplanned consequences should not be underestimated. According to Jessen:

“The side effects of technological innovation are more influential than the direct effects, and they have the rippling effect of a pebble hitting water; they spread out in ever enlarging concentric circles throughout a society to transform its behavior, its outlook, and its moral ethic” [76].

Of course not all secondary effects can be foreseen. However, this does not mean that deliberating on the possible consequences is without some genuine worth. Surely some form of preparation to deal with adverse outcomes, or at least to notice them before they become irreversible, is better than none at all.

The scenario Control Unwired has demonstrated the potential of LBS to create social change. It has also shown that the use of LBS may have unintended but long-term adverse effects. For this reason the major recommendations are cross-disciplinary debate and technology assessment using detailed scenario planning. We need to critically engage with LBS, its potential applications, and possible side-effects instead of just blindly hurtling along with the momentum of technology-push.


1. J. E. Jacobs, "Social implications of computers: ethical and equity issues", ACM Outlook, pp. 100-114, 1988.

2. C. Huff, "Practical guidance for teaching the social impact statement", ACM CQL, pp. 86-89, 1996.

3Cases on Engineering Ethics Practice, Oct. 2006, [online] Available: eng/cases.html.

4. A. Ghafarian, "Integrating ethical issues into the undergraduate computer science curriculum", ACM CCSC - JCSC, vol. 18, no. 2, pp. 180-188, 2002.

5. J. A. Rohn, "Usability in practice: Alternatives to formative evaluations — Evolution and revolution", CHI 2002, pp. 891-897, 2002.

6. R. G. Epstein, The Case of the Killer Robot, NY, New York:Wiley, 1997.

7. R. G. Epstein, "Stories and plays about the ethical and social implications of artificial intelligence", Intelligence, pp. 17-19, 2000.

8. R. G. Epstein, "Latest developments in the killer robot computer ethics scenario", ACM SIGCSE, pp. 111-115, 1995.

9. R. G. Epstein, "In-depth! The Silicon Valley Sentinel-Observer’s public affairs NetTV program presents: Toxic knowledge", Proc. Ethics and Social Impact Component on Shaping Policy in the Information Age, pp. 86-91, 1998.

10. J. M. Artz, "The role of stories in computer ethics", Computers and Society, pp. 11-13, 1998.

11. M. Lindgren, H. Bandhold, Scenario Planning: The link between future and strategy, NY, New York:Palgrave-Macmillan, pp. 21, 2003.

12. J. P. Martino, "A review of selected recent advances in technological forecasting", Technological Forecasting and Social Change, vol. 70, no. 8, pp. 719-722, 2003.

13. M. Godet, "The art of scenarios and strategic planning: Tools and pitfalls", Technological Forecasting and Social Change, vol. 65, no. 1, pp. 3-11, 2000.

14. M. Lindgren, H. Bandhold, Scenario Planning: The link between future and strategy, NY, New York:Palgrave Macmillan, pp. 38-168, 2003.

15. P. Hogan, On Interpretation: Meaning and Inference in Law Psychoanalysis and Literature, GA, Athens:Univ. of Georgia, pp. 9, 1996.

16. K. Michael, M. G. Michael, "Microchipping people: The rise of the Electrophorus", Quadrant, vol. 49, no. 3, pp. 22-33, 2005.

17. S. Žižek, "Cyberspace or the unbearable closure of being" in Endless Night: Cinema and Psychoanalysis Parallel Histories, CA, Berkeley:Univ. of California Press, pp. 92-102, 1999.

18. G. Aquino, "Dialled in: GPS cell phones", PC World, Mar. 2004, [online] Available: http://www.,115273-page,1/article.html, accessed.

19CF Card GPS for PDA’s, Sept. 2005, [online] Available:

20Agis develops real time location service for savvy mobile phone users, Apr. 2005, [online] Available: http://www.

21How GPS Works, Sept. 2005, [online] Available: http://www.trimble. com/gps/whygps-anim00.shtml.

22. S. Dooley, P. Gough, "Software integration lowers the cost of A-GPS", Wireless-Web, 2005, [online] Available:, accessed.

23. N. Pikabea, GPS for taxis, May 2004, [online] Available: http://innovations report. de/html/berichte/kommunikation_medien/beri cht29210.html, accessed.

24. B. Gates, The Road Ahead, NY, New York:Viking, pp. 218-219, 1995.

25Silent Commerce Chips Away at Star City Casino Wardrobe Worries, [online] Available: http:// ccesses/StarCityCasino.htm.

26TAGSYS RFID Products, Sept. 2005, [online] Available: rfid/tagsys_produit/rfid_tag-4-1-1.html, accessed.

27. K. J. Lin, T. Yu, C. Y. Shih, "The design of a personal and intelligent pervasive-commerce system architecture", Proc. Second IEEE Int. Workshop on Mobile Commerce and Services, pp. 163, 2005.

28. M. Cable, The award-winning Flat Screen InvisiSound Mirror Frame makes home theater audio and video disappear, CA, Brisbane:Monster Press Room, Jan. 2005, [online] Available: http://

29. G. McArthur, "Videoconferencing over IP - The switch is on", Business Communications Rev., Sept. 2004, [online] Available: 2004/09/p62.php.

30. M. Madou, BioMEMS/BioNEMS: Research in the laboratories of Marc Madou, 2003, [online] Available: df.

31. H. Brøseth, H. C. Pedersen, "Hunting effort and game vulnerability studies on a small scale: A new technique combining radio-telemetry GPS and GIS", J. Applied Ecology, vol. 37, no. 1, pp. 182, 2000.

32. C. S. Miner, "Digital jewelry: Wearable technology for everyday life", CHI '01 Extended Abstracts on Human Factors in Computing Systems, pp. 45, 2001-Mar.

33Wherify's GPS Wherifone, Sept. 2005, [online] Available:

34GPS Marine Tracking Systems / Vessel Tracking, Sept. 2005, [online] Available: http:// king-systems/Marine-Tracking/marine-tracking.html.

35.J. Dodd, "Parents & technology: The Wherify GPS personal locator offers help but fails to protect", General Computing, vol. 15, no. 2, pp. 35, 2004.

36Job Guide, 2005, [online] Available: =615&state_id=NSW.

37Electronic Monitoring, 1996, [online] Available: http://www.

38Applied Digital Solutions Announces Working Prototype of Subdermal GPS Personal Location Device, 2003, [online] Available:

39NSWLRC Report: Sentencing, Oct. 2006, [online] Available:

40. D. Brown, D. Farrier, S. Egger, L. McNamara, Criminal Laws, NSW, Leichhardt:Federation, 2001.

41Discretionary Parole, 2002, [online] Available: http://www. ole.htm.

42. D. Sugg, L. Moore, P. Howard, Electronic monitoring and offending behavior: reconviction results for the second year of trials of curfew orders, 2001, [online] Available: http://www.probation.[1].pdf.

43Electronic Monitoring, 2004, [online] Available:

44Chapter 7: Parole, 1996, [online] Available:, accessed.

45Keeping Track of Electronic Monitoring, 1999, [online] Available: Elec-Monit.pdf.

46Parole Sex Offenders and Rehabilitation Programs, 2003, [online] Available: Offenders_Note.pdf, accessed.

47. S. J. Lee, J. F. Edens, "Exploring predictors of institutional misbehavior among male Korean inmates", Criminal Justice and Behavior, vol. 32, no. 4, pp. 412-414, 2005.

48. "Terror tape targets Melbourne", The Australian, Sept. 2005.

49. K. Michael, A. Masters, "The advancement of positioning technologies in defense intelligence" in Applications of Information Systems to Homeland Security and Defense, U.K., London: IDG Press, pp. 193-201, 2005.

50. A. M. Piehl, B. Useem, J. J. DiIulio, Right-sizing justice: A cost-benefit analysis of imprisonment in three states, 1999, [online] Available: cr_8.htm, accessed.

51. J. Scheeres, "Tracking Junior with a microchip", Wired News, 2003, [online] Available: http://www.,1282,60771,00. html, accessed.

52. M. Millanvoye, "Teflon under my skin", UNESCO, 2001, [online] Available:

53. Computers Ethics and Society, NY, New York:Oxford Univ. Press, pp. vi, 2002.

54. E. Adler, J. L. Bachant, "Intrapsychic and interactive dimensions of resistance: A contemporary perspective", Psychoanalytic Psychology, vol. 15, no. 4, pp. 451-454, 1998.

55. N. Gilmore, "PM defends anti-terrorism laws", Lateline, 2005, [online] Available: lateline/content/2005/s1456384.htm.

56. "Terror laws shouldn't go overboard: Evans", The Sydney Morning Herald, 2005, [online] Available: http:// 1127586836368.html?from=moreStories.

57. M. Wilkinson, "Powers pave way for secret new world", The Sydney Morning Herald, pp. 1-6, Sept. 2005.

58. J. Kerr, "House arrest for terror suspects", The Sydney Morning Herald, pp. 1, Sept. 2005.

59. H. E. Marano, "Trust someone again", Psychology Today, vol. 31, no. 4, pp. 7, 1998.

60. T. Mizrahi, "How can you learn to trust again", Psychology Today, vol. 35, no. 2, pp. 12, 2002.

61. J. A. Perolle, "Computer-supported cooperative work" in Computers Surveillance and Privacy, MN, Minneapolis:Univ. of Minnesota Press, pp. 47-59, 1996.

62. J. Weckert, "Trust and monitoring in the workplace", Proc. IEEE International Symposium on Technology and Society, pp. 245, 2000.

63. J. Lipscombe, B. Williams, Are Science and Technology Neutral, U.K., Manchester:Univ. of Manchester, pp. 19, 1979.

64. L. Winner, Autonomous Technology: Technics-out-of-Control as a Theme in Political Thought, MA, Cambridge:M.I.T. Press, pp. 76, 1977.

65.E. Braun, Futile Progress: Technology's Empty Promise, U.K., London:Earthscan, pp. 21, 1995.

66. T. P. Hughes, Technological momentum in Does Technology Drive History?, MA, Cambridge:M.I.T. Press, pp. 101, 1994.

67. D. Lyon, Surveillance Society: Monitoring Everyday Life Berkshire, U.K.:Open Univ. Press, pp. 23-24, 2001.

68. "Power outage hits Auckland hours after crisis declared over", CNN World News, 1998, [online] Available: auckland.outage/.

69. K. Westcott, "New York's good and bad blackouts", BBC News, 2003, [online] Available:

70. P. Bereano, "Technology is a tool of the powerful" in Computers Ethics and Society, NY, New York:Oxford Univ. Press, pp. 85, 2003.

71. G. T. Marx, Undercover: Police Surveillance in America, U.K., Berkeley:Univ. of California Press, 1988.

72. L. G. Kun, "Homeland security: the possible probable and perils of information technology", IEEE Engineering in Medicine and Biology, vol. 21, no. 5, pp. 28-33, 2002.

73. L. Perusco, K. Michael, M. G. Michael, "Location-based services and the privacy-security dichotomy", Proc. Third Int.Conf. on Mobile Computing and Ubiquitous Networking, 2006.

74. R. Kling, "The seductive equation of technological progress with social progress" in Computerization and Controversy: Value Conflicts and Social Choices, MA, Boston:Academic, pp. 22-23, 1996.

75. The Annotated Alice, NY, New York:Penguin, pp. 88, 1970.

76. P. Jessen, Technology Assessment: Creative Futures, MI, Ann Arbor:Univ. of Michigan Press, pp. 245-246, 1980.


The authors would like to acknowledge the significant contribution of Dr. M.G. Michael, Honorary Fellow at the School of Information Systems and Technology at the University of Wollongong and a member of the IP Location-Based Services Research Program.


Privacy, Security, Ethics, Technological innovation, Social implications of technology, Animals, Mission critical systems, Radio frequency, Radiofrequency identification, Uncertainty, security of data, data privacy, mobile computing, privacy-security dichotomy, location-based services, scenario planning, security risk, privacy risk

Citation: Laura Perusco, Katina Michael, "Control, trust, privacy, and security: evaluating location-based services", IEEE Technology and Society Magazine, Vol. 26, No. 1, Spring 2007, pp. 4 - 16.