Perceived barriers for implanting microchips in humans

Abstract

This quantitative, descriptive study investigated if there was a relationship between countries of residence of small business owners (N = 453) within four countries (Australia, India, UK, and the USA) with respect to perceived barriers to RFID (radio frequency identification) transponders being implanted into humans for employee ID. Participants were asked what they believed were the greatest barriers in instituting chip implants for access control in organizations. Participants had six options from which to select. There were significant chi-square analyses reported relative to respondents' countries and: 1) a perceived barrier of technological issues (X2= 11.86, df = 3, p = .008); 2) a perceived barrier of philosophical issues (right of control over one's body) (X2= 31.21, df = 3, p = .000); and 3) a perceived barrier of health issues (unknown risks related to implants) (X2= 10.88, df = 3, p = .012). There were no significant chi-square analyses reported with respect to countries of residence and: 1) religious issues (mark of the beast), 2) social issues (digital divide), and 3) cultural issues (incisions into the skin are taboo). Thus, the researchers concluded that there were relationships between the respondents' countries and the perception of barriers in institutional microchips.

SECTION I. Introduction

The purpose of this study was to investigate if there were relationships between countries of residence (Australia, India, UK, and the USA) of small business owners  and perceived barriers of instituting RFID (radio frequency identification) transponders implanted into the human body for identification and access control purposes in organizations [1]. Participants were asked what they believed were the greatest barriers in instituting chip implants for access control in organizations [2]. Participants had six options from which to select all that apply, as well as an option to specify other barriers [3]. The options for perceived barriers included:

  • technological issues-RFID is inherently an insecure technology
  • social issues-there will be a digital divide between those with employees with implants for identification and those that have legacy electronic identification
  • cultural issues-incisions into the skin are taboo
  • religious issues-mark of the beast
  • philosophical issues-right of control over one's body
  • health issues-there are unknown risks related to implants that are in the body over the long term
  • other issues.

There were significant chi-square analyses reported relative to respondents' countries and: 1) the perceived barrier of technological issues; 2) the perceived barrier of philosophical issues (right of control over one's body); and 3) the perceived barrier of health issues (unknown risks related to implants). There were no significant chi-square analyses reported with respect to countries and religious issues (mark of the beast), social issues (digital divide), and cultural issues (incisions into the skin are taboo).

RFID implants are capable of omnipresent electronic surveillance. RFID tags or transponders can be implanted into the human body to track the who, what, where, when, and how of human life [4]. This act of embedding devices into human beings for surveillance purposes is known as uberveillance [5]. While the tiny embedded RFID chips do not have global positioning capabilities, an RFID reader (fixed or mobile) can capture time stamps, exit and entry sequences to denote when someone is coming or going, which direction they are travelling in, and then make inferences on time, location, distance. and speed.

In this paper, the authors present a brief review of the literature, key findings from the study, and a discussion on possible implications of the findings. Professionals working in the field of emerging technologies could use these findings to better understand how countries of residence may affect perceptions of barriers in instituting chip implants in humans.

SECTION II. Review of Literature

A. Implants and Social Acceptance

In 2004, the FDA (Food & Drug Administration) of the United States approved an implantable chip for use in humans in the U.S [6]. The implanted chip was and is being marketed by a variety of commercial enterprises as a potential method to detect and treat diseases, as well as a potential lifesaving device. If a person was brought to an emergency room unconscious, a scanner in the hospital doorway could read the person's unique ID on the implanted chip. The ID would then be used to unlock the personal health records (PHR) of the patient from a database [7]. Authorized health professionals would then have access to all pertinent medical information of that individual (i.e. medical history, previous surgeries, allergies, heart condition, blood type, diabetes) to care for the patient aptly. Additionally, the chip is being touted as a solution to kidnappings in Mexico (e.g. by the Xega Company), among many other uses [8].

B. Schools: RFID Tracking

A rural elementary school in California planned to implement RFID-tagged ID cards for school children, however the American Civil Liberties Union (ACLU) fought successfully to revoke the program. Veritable risks were articulated by the ACLU including identity theft, or kidnapping if the system was hacked and resulted in a perpetrator being able to access locations of schoolchildren.

However, with school districts looking to offset cuts in state funding which are partly based on attendance figures, RFID technology provides a method to count students more accurately. Added to increased revenues, administrators are facing the reality of increasing security issues; thus more school districts are adopting RFID to track students to improve safety. For many years in Tokyo, students have worn mandatory RFID bracelets; they are tracked not only in the school, but also to and from school [9] [10]. In other examples, bags are fitted with GPS units.

In 2012, the Northside Independent School District in San Antonio, Texas began a pilot program to track 6.2% of its 100,000 students through RFID tagged ID-cards. Northside was not the first district in Texas; two other school districts in Houston successfully use the technology with reported gains in hundreds of thousands of dollars in revenue due to improved attendance. The school board unanimously approved the program, but not after first debating privacy issues. Chip readers on campuses and on school buses will detect a student's location and authorized administrators will have access to the information. At a cost of 525,000 to launch the pilot program and approximately 1.7 million in the first year due to higher attendance figures, as well as Medicaid reimbursements for the busing of special education students. However, students could forget or lose the cards which would negatively affect the system [3]. One of Northside's sophomore students, Andrea Hernandez, refused to wear the RFID tag round her neck based on religious reasons. Initially, the school expelled her but when the case went to court, she was reinstated, a judge ruling her constitutional rights had been violated [11].

C. Medical Devices: RFID Implants

Recent technological developments are reaching new levels with the integration of silicon and biology; implanted devices can now interact directly with the brain [12]. Implantable devices for medical purposes are often highly beneficial to restore functions that were lost. Such current medical implants include cardiovascular pacers, cochlear and brainstem implants for patients with hearing disorders, implantable drug delivery pumps, implantable neurostimulation devices for such patients as those with urinary incontinence, chronic pain, or epilepsy, deep brain stimulation for patients with Parkinson's, and artificial chip-controlled legs [13].

D. RFID in India

Although India has been identified as a significant prospective market for RFID due to issues with the supply chain and a need for transparency, some contend that the slow adoption of RFID solutions can be tracked to unskilled RFID solution providers. Inexperienced systems integrators and vendors are believed to account for failed trials, leaving companies disillusioned with the technology, and subsequently abandoning solutions and declaiming its benefits loudly and publicly. A secondary technological threat to RFID adoption is believed to be related to price competitiveness in India. In such a price-sensitive environment, RFID players are known to quote the lowest costs per tag, thereby using inferior hardware. Thus, customers perceive RFID to be inconsistent and unreliable for use in the business setting [14]. The compulsory biometrics roll out, instituted by the Unique Identification Authority of India (UIDAI) is in direct contrast to the experience of RFID (fig. 1)

Fig. 1. Taking fingerprints for Aadhaar, a 12-digit unique number has been issued for all residents in india. The number will be stored in a centralized database and linked to basic demographic and biometric information. The system institutes multimodal biometrics. Creative commons: fotokannan.

Fig. 1. Taking fingerprints for Aadhaar, a 12-digit unique number has been issued for all residents in india. The number will be stored in a centralized database and linked to basic demographic and biometric information. The system institutes multimodal biometrics. Creative commons: fotokannan.

E. RFID in Libraries

In 2010, researchers reported that many corporate libraries had begun deploying RFID. RFID tags are placed into books and other media and used in libraries for such purposes as to automate stock verification, to locate misplaced items, to check in/check out patrons without human interaction, and to detect theft. In India, several deployment and implementation issues were identified and they are: consumer privacy issues/ethical concerns, costs, lack of standards and regulations in India (e.g. data ownership, data collection limitations), user confusion (e.g. lack of training and experience with the technology), and the immaturity of the technology (e.g. lack of accuracy, scalability, etc.) [15].

F. RFID and OEMS/Auto Component Manufacturers

In India, suppliers are not forced to conform to stringent regulations like those that exist in other countries. In example, the TREAD Act in the U.S. provided the impetus for OEMs to invest in track and trace solutions; failure to comply with the regulations can carry a maximum fine in the amount of $15 million and a criminal penalty of up to 15 years. Indian suppliers are not only free from such regulations of compliance, but also cost conscious with low volumes of high value cars. It is believed that the cost of RFID solutions is not yet justified in the Indian market [16].

G. Correctional Facilities: RFID Tracking

A researcher studied a correctional facility in Cleveland, Ohio to evaluate the impact of RFID technology to deter such misconduct as sexual assaults. The technology was considered because of its value in confirming inmate counts and perimeter controls. In addition, corrections officers can utilize such technology to check inmate locations against predetermined schedules, to detect if rival gang members are in close proximity, to classify and track proximity of former intimate partners, single out those inmates with food allergies or health issues, and even identify if inmates who may attempt to move through the cafeteria line twice [17].

The results of the study indicated that RFID did not deter inmate misconduct, although the researchers articulated many issues that affected the results. Significant technological challenges abounded for the correctional facility as RFID tracking was implemented and included system inoperability, signal interference (e.g. “blind spots” where bracelets could not be detected), and transmission problems [18] [17].

H. Social Concerns

Social concerns plague epidermal electronics for nonmedical purposes [19]. In the United States, many states have crafted legislation to balance the potential benefits of RFID technology with the disadvantages associated with privacy and security concerns [20]. California, Georgia, Missouri, North Dakota, and Wisconsin are among states in the U.S. which have passed legislation to prohibit forced implantation of RFID in humans [21]. The “Microchip Consent Act of 2010”, which became effective on July 1, 2010 in the state of Georgia, not only stated that no person shall be required to be implanted with a microchip (regardless of a state of emergency), but also that voluntary implantation of any microchip may only be performed by a physician under the authority of the Georgia Composite Medical Board.

Through the work of Rodata and Capurro in 2005, the European Group on Ethics in Science and New Technologies to the European Commission, examined the ethical questions arising from science and new technologies. The role of the opinion was to raise awareness concerning the dilemmas created by both medical and non-medical implants in humans which affect the intimate relation between bodily and psychic functions basic to our personal identity [22]. The opinion stated that Information and Communications Technology implants, should not be used to manipulate mental functions or to change a personal identity. Additionally, the opinion stated that principles of data protection must be applied to protect personal data embedded in implants [23]. The implants were identified in the opinion as a threat to human dignity when used for surveillance purposes, although the opinion stated that this might be justifiable for security and/or safety reasons [24].

I. Increased Levels of Willingness to Adopt: 2005–2010

Researchers continue to investigate social acceptance of the implantation of this technology into human bodies. In 2006, researchers reported higher levels of acceptance of the implantation of a chip within their bodies, when college students perceived benefits from this technology [25]. Utilizing the same questions posed in 2005 to college students attending both private and public institutions of higher education by the aforementioned researchers, the researchers once again in 2010 investigated levels of willingness to implant RFID chips to understand if there were shifts in levels of willingness of college students to implant RFID chips for various reasons [25] [26]. In both studies, students were asked: “How willing would you be to implant an RFID chip in your body as a method (to reduce identity theft, as a potential lifesaving device, to increase national security)?” A 5-point Likert-type scale was utilized varying from “Strongly Unwilling” to “Strongly Willing”. Comparisons of the 2005 results of the study to the results of the 2010 research revealed shifts in levels of willingness of college students. A shift was evident; levels of willingness moved from unwillingness toward either neutrality or willingness to implant a chip in the human body to reduce identity theft, as a potential lifesaving device, and to increase national security. Levels of unwillingness decreased for all aforementioned areas as follows [26]. Between 2005 and 2010, the unwillingness (“Strongly unwilling” and “Somewhat unwilling”) of college students to implant an RFID chip into their bodies decreased by 22.4% when considering RFID implants as method to reduce identity theft, decreased by 19.9% when considering RFID implants as a potential lifesaving device, and decreased by 16.3% when considering RFID implants to increase national security [26].

J. RFID Implant Study: German Tech Conference Delegates

A 2010 survey of individuals attending a technology conference conducted by BITKOM, a German information technology industry lobby group, reported 23% of 1000 respondents would be prepared to have a chip inserted under their skin for certain benefits; 72% of respondents, however, reported they would not allow implantation of a chip under any circumstances. Sixteen percent (16%) of respondents reported they would accept an implant to allow emergency services to rescue them more quickly in the event of a fire or accident [27].

K. Ask India: Are Implants a More Secure Technology?

Previously, researchers reported a significant chi-square analysis relative to countries of residence and perceptions of chip implants as a more secure technology for identification/access control in organizations. More than expected (46 vs. 19.8; adjusted residual = 7.5), participants from India responded “yes” to implants as a more secure technology. When compared against the other countries in the study, fewer residents from the UK responded “yes” than expected (9 vs. 19.8), and fewer residents from the USA responded “yes” than expected (11 vs. 20.9). In rank order, the countries contributing to this significant relationship were India, the UK and the USA; no such differences in opinion were found for respondents from Australia. [28].

Due to heightened security threats, there appears to be a surge in demand for security in India [29][30]. A progression of mass-casualty assaults that have been carried out by extremist Pakistani nationals against hotels and government buildings in India has brought more awareness to the potential threats against less secure establishments [30]. The government is working to institute security measures at the individual level with a form of national ID cards that will house key biometric data of the individual. In the local and regional settings, technological infrastructure is developing rapidly in metro and non-metro areas because of the increase of MNCs (multi-national corporations) now locating in India. Although the neighborhood “chowkiddaaar” (human guard/watchman) was previously a more popular security measure for localized security, advances in, and reliability and availability of, security technology is believed to be affecting the adoption of electronic access security as a replacement to the more traditional security measures [29] [30].

L. Prediction of Adoption of Technology

Many models have been developed and utilized to understand factors that affect the acceptance of technology such as: The Moguls Model of Computing by Ndubisi, Gupta, and Ndubisi in 2005, Diffusion of Innovation Theory by Rogers in 1983; Theory of Planned Behavior by Ajzen in 1991; The Model of PC Utilization attributed to Thompson, Higgins, and Howell in 1991, Protection Motivation Theory (PMT) by Rogers in 1985, and the Theory of Reasoned Action attributed to Fischbein & Ajzen in 1975, and with additional revisions by the same in 1980 [31].

Researchers in Berlin, Germany investigated consumers' reactions to RFID in retail. After viewing an introductory stimulus film about RFID services in retail, participants evaluated the technology and potential privacy mechanisms. Participants were asked to rate on a five point Likert-type scale (ranging from “not at all sensitive” to “extremely sensitive”) their attitudes toward privacy with such statements as: “Generally, I want to disclose the least amount of data about myself.” Or “To me it is irrelevant if somebody knows what I buy for my daily needs.” In the study, participants reported moderate privacy awareness  and interestingly, participants reported a moderate expectation that legal regulations will result in sufficient privacy protection . Results showed that the extent to which people view the protection of their privacy strongly influences how willing people will be to accept RFID in retail. Participants were aware of privacy problems with RFID-based services, however, if retailers articulate that they value the customers' privacy, participants appeared more likely to adopt the technology. Thus, privacy protection (and the communication of it) was found to be an essential element of RFID rollouts [32].

SECTION III. Methodology

This quantitative, descriptive study investigated if there were relationships between countries of residence with respect to perceived barriers of RFID chip implants in humans for identification and access control purposes in organizations. The survey took place between April 4, 2011 and April 18, 2011. It took an average of 10 minutes to complete each online survey. Participants, who are small business owners  within four countries including Australia , India , UK , and the USA , were asked “As a senior executive, what do you believe are the greatest barriers in instituting chip implants for access control in organizations?” Relative to gender, 51.9% of participants are male; 48.1% are female. The age of participants ranged from 18 to 71 years of age; the mean age was 44 and the median age was 45. Eighty percent of organizations surveyed had less than 5 employees. Table I shows the survey participant's industry sector.

Table I Senior executive's industry sector

Table I Senior executive's industry sector

The study employed one instrument that collected key data relative to the business profile, the currently utilized technologies for identification and access control at the organization, and the senior executives' perceptions of RFID implants in humans for identification and access control in organizations. Twenty-five percent of the small business owners that participated in the survey said they had electronic ID access to their premises. Twenty percent of small business owner employee ID cards came equipped with a photograph, and less than five percent stated they had a security breach in the 12 months preceding the study.

Descriptive statistics, including frequency counts and measures of central tendency, were run and chi-square analysis was conducted to examine if there were relationships between the respondents' countries and each of the perceived barriers in instituting microchips in humans.

SECTION IV. Findings

There was a significant relationship reported relative to respondents' countries for each of three of the six choices provided in the multi-chotomous question: “As a senior executive, what do you believe are the greatest barriers in instituting chip implants for access control in organizations?”

A. Barrier: Technological Issues

The significant chi-square analysis  indicated that there was a relationship between the respondents' countries and the perceived barrier of technological issues. Using the rule of identifying adjusted residuals greater than 2.0, examination of the adjusted residuals indicated that the relationship was created when more than expected participants from India selected “technological issues (RFID is inherently an insecure technology)” as a barrier in instituting chip implants (45 vs. 31.1; adjusted residual 3.4).

B. Barrier: Philosophical Issues

The second significant chi-square analysis , df = 3,  indicated that there was a relationship between the respondents' countries and the perceived barrier of philosophical issues (right of control over one's body). An examination of the adjusted residuals indicated that the relationship was mostly created when fewer than expected participants from India selected philosophical issues as a barrier in instituting chip implants (37 vs. 61.3; adjusted residual 5.3). In addition, more residents from Australia than expected (78 vs. 62.9; adjusted residual 3.3) selected philosophical issues as a barrier. In rank order, the countries contributing to this significant relationship were India, followed by Australia; no such differences in opinion were found for respondents from UK and the USA.

C. Barrier: Health Issues

The third significant chi-square analysis  indicated there was a relationship between the respondents' countries and the perceived barrier of health issues (unknown risks related to implants). An examination of the adjusted residuals indicated that the relationship was mostly created when more than expected residents of India selected health issues as a barrier in instituting chip implants (57 vs. 43.3; adjusted residual 3.1). In addition, fewer residents from America than expected (36 vs. 45.7; adjusted residual 2.1) selected health issues as a barrier. In rank order, the countries contributing to this significant relationship were India, followed by the USA; no such differences in opinion were found for respondents from Australia and the UK.

D. Barrier: Social Issues, Religious Issues, and Cultural Issues

There were no significant chi-square analyses reported with respect to respondents' countries and social issues (digital divide), religious issues (mark of the beast), and cultural issues (incisions into the skin are taboo). Thus, in this study the researchers concluded no such differences in opinion were found for respondents' countries of residence and the barriers of social issues, religious issues, and cultural issues.

E. Statistical Summary

When asked whether or not, radiofrequency identification (RFID) transponders surgically implanted beneath the skin of an employee would be a more secure technology for instituting employee identification in the organization, only eighteen percent believed so. When asked subsequently about their opinion on how many staff in their organization would opt for an employee ID chip implant instead of the current technology if it were available, it was stated that eighty percent would not opt in. These figures are consistent with an in depth interview conducted with consultant Gary Retherford who was responsible for the first small business adoption of RFID implants for access control at Citywatcher.com in 2006 [33]–[34][35] In terms of the perceived barriers to instituting an RFID implant for access control in organizations, senior executives stated the following (in order of greatest to least barriers): 61% said health issues, 55% said philosophical issues, 43% said social issues; 36% said cultural issues; 31% said religious issues, and 28% said technological issues.

F. Open-Ended Question

When senior executives were asked if they themselves would adopt an RFID transponder surgically implanted beneath the skin the responses were summarized into three categories-no, unsure, and yes [36]. We present a representative list of these responses below with a future study focused on providing in depth qualitative content analysis.

1) No, I Would Not Get an RFID Implant

“No way would I. Animals are microchipped, not humans.”

“Absurd and unnecessary.”

“I absolutely would not have any such device implanted.”

“Hate it and object strongly.”

“No way.”h

“No thanks.”

“Yuk.”

“Absolutely creepy and unnecessary.”

“Would not consider it.”

“I would leave the job.”

“I don't like the idea one bit. The idea is abhorrent. It is invasive both physically and psychologically. I would never endorse it.”

“Would never have it done.”

“Disagree invading my body's privacy.”

“Absolutely vehemently opposed.”

“This proposal is a total violation of human rights.”

“Yeah right!! and get sent straight to hell! not this little black duck!”

“I do not believe you should put things in your body that God did not supply you with …”

“I wouldn't permit it. This is a disgraceful suggestion. The company does not OWN the employees. Slavery was abolished in developed countries more than 100 years ago. How dare you even suggest such a thing. You should be ashamed.”

“I would sooner stick pins in my eyeballs.”

“It's just !@;#%^-Nazi's???”

2) I am Unsure about Getting an RFID Implant

“A bit overkill for identification purposes.”

“Uncomfortable.”

“Maybe there is an issue with OH&S and personal privacy concern.”

“Unsure.”

“Only if I was paid enough to do this, $100000 minimum.”

“Unsure, seems very robotic.”

“I'm not against this type of device but I would not use it simply for business security.”

“A little skeptical.”

“A little apprehensive about it.”

3) Yes, I would Get an RFID Implant

“Ok, but I would be afraid that it could be used by”

“outside world, say police.”

“Sick!”

“It is a smart idea.”

“It would not be a problem for me, but I own the business so no philosophical issues for me.”

“I'd think it was pretty damn cool.”

SECTION V. Discussion: Perceived Barriers

A. Barrier: Technological Issues

The literature revealed many technological barriers for non-implantable chips; this study suggests this same barrier is also perceived for implantable chips and is likely to be related [37]. More than expected, Indian participants in this study selected technological issues (RFID is inherently an insecure technology) as a barrier in instituting chip implants for access control; no such differences of opinion were found for the other countries in the study. However, the literature revealed in other analyses, that more than expected Indian participants, answered “yes” when asked if implants are a more secure technology for instituting identification/access control in an organization. The findings appear to suggest that although Indian participants perceive RFID implants as a more secure technology when compared with other such methods as manual methods, paper-based, smartcards, or biometric/RFID cards, participants are likely to view this technology as undeveloped and still too emergent. Further research is needed to substantiate this conclusion, although a review of the literature revealed that RFID solution providers are already in abundance in India, with many new companies launching and at a rapid pace. Without standards and regulations, providers are unskilled and uneducated in the technology, providing solutions that often do not prove successful in implementation. Customers then deem the technology as inconsistent and ineffective in its current state. In addition, RFID players undercut each other, providing cheap pricing for cheap, underperforming hardware. Therefore, the preliminary conclusion of the researchers is that adoption of implants in India is likely to be inhibited not only now, but well into the future if the implementations of non-implantable RFID solutions continue to misrepresent the capabilities of the technology. It is likely that far afield to accepting implantable chips, individuals in India would need to be assured of consistency and effectiveness for RFID chip use in non-human applications.

B. Barrier: Philosophical Issues

Fewer than expected Indian participants selected philosophical issues (right of control over one's body) as a barrier; and more than expected, Australian participants selected this as a barrier. The researchers concluded that this is fertile ground for future research [38]. The deep cultural assumptions of each country are likely to influence participants' responses. In example, although Indian philosophies vary, many emphasize the continuity of the soul or spirit, rather than the temporary state of the flesh (the body). Further research would inform these findings through an exploration as to how and why participants in India versus participants in Australia perceive their own right of control over one's body.

C. Barrier: Health Issues

More than expected Indian participants selected health issues (unknown risks related to implants) as a barrier in instituting implants; and, fewer than expected American participants selected this as a barrier. The researchers conclude that these results may be a result of the perceived successes with the current usage of the technology. The literature revealed participants from India are experiencing poor implementations of the technology. Conversely, Americans are increasingly exposed to the use of surgically implanted chips in pets (often with no choice if the pet is adopted from a shelter) and with little or no health issues faced [39]. In addition, segments of the healthcare industry are advocating for RFID for use in the supply chain (e.g. blood supply) with much success. To inform these findings, further research is needed to explore how participants from each country describe the unknown risks related to implants.

SECTION VI. Conclusion

In conclusion, the authors recognize there are significant social implications relative to implanting chips in humans. Although voluntary chipping has been embraced by certain individuals, the chipping of humans is rare and remains mostly a topic of discussion and debate into the future. Privacy and security issues abound and are not to be minimized. However, in the future, we may see an increased demand for, and acceptance of, chipping, especially as the global environment intensifies. When considering the increase in natural disasters over the past two years, the rising tensions between nations such as those faced by India with terrorism by extremists from neighboring countries, and the recent contingency plans to enact border controls to mitigate refugees fleeing failing countries in the Eurozone, the tracking of humans may once again come to the forefront as it did post 9–11 when rescuers raced against the clock to locate survivors in the rubble.

India is of particular interest in this study; participants from this country contributed most in many of the analyses. India is categorized as a developing country (or newly industrialized country) and the second most populous country in the world. The government of India is already utilizing national identification cards housing biometrics, although the rollout has been delayed as officials work to solve issues around cards that can be stolen or misplaced, as well as how to prevent use fraudulently after the cardholder's death. Technological infrastructure is improving in even the more remote regions in India as MNCs (multi-national corporations) are locating business divisions in the country. The findings, set against the backdrop of the literature review, bring to light what seems to be an environment of people more than expected (statistically) open to (and possibly ready for) the technology of implants when compared with developed countries. However ill-informed RFID players in India are selling a low quality product. There appears to be lack of standards and insufficient knowledge of the technology with those who should know the most about the technology. Further research is necessary to not only understand the Indian perspective, but also to better understand the environment now and into the future.

References

1. K. Michael and M. G. Michael, "The Diffusion of RFID Implants for Access Control and ePayments: Case Study on Baja Beach Club in Barcelona, " in IEEE International Symposium on Technology and Society (ISTAS10), Wollongong, Australia, 2010, pp. 242-252.

2. K. Michael and M. G. Michael, "Implementing Namebers Using Microchip Implants: The Black Box Beneath The Skin, " in This Pervasive Day: The Potential and Perils of Pervasive Computing, J. Pitt, Ed., ed London, United Kingdom: Imperial College Press, 2012, pp. 163-203.

3. K. Michael and M. G. Michael, "The Social, Cultural, Religious and Ethical Implications of Automatic Identification, " in The Seventh International Conference on Electronic Commerce Research, Dallas, Texas, 2004, pp. 432-450.

4. M. G. Michael and K. Michael, "A note on uberveillance, " in From dataveillance to uberveillance and the realpolitik of the transparent society, K. Michael and M. G. Michael, Eds., ed Wollongong: University of Wollongong, 2006, pp. 9-25.

5. M. G. Michael and K. Michael, Eds., Uberveillance and the Social Implications of Microchip Implants (Advances in Human and Social Aspects of Technology. Hershey, PA: IGI Global, 2014.

6. J. Stokes. (2004, October 14, 2004). FDA approves implanted RFID chip for humans. Available: http://arstechnica.com/uncategorized/2004/10/4305-2/

7. K. Michael, et al., "Microchip Implants for Humans as Unique Identifiers: A Case Study on VeriChip, " in Conference on Ethics, Technology, and Identity, Delft, Netherlands, 2008.

8. K. Opam. (2011, August 22, 2011). RFID Implants Won't Rescue the People Kidnapped in Mexico. Available: http://gizmodo.com/5833237/rfid-implants-wont-work-if-youve-beenkidnapped-in-mexico

9. C. Swedberg. (2005, June 12, 2012). L.A. County Jail to track inmates. Available: http://www.rfidjournal.com/article/articleview/1601/1/1

10. F. Vara-Orta. (2012, May 31, 2012). Students will be tracked via chips in IDs. Available: http://www.mysanantonio.com/news/education/article/Students-willbe-tracked-via-chips-in-IDs-3584339.php#ixzz1vszm9Wn4

11. Newstaff. (November 27, 2012, May 13, 2014). Texas School: Judge Overturns Student's Expulsion over RFID Chip. Available: http://www.govtech.com/Texas-School-Wear-RFID-Chip-or-Get-Expelled.html

12. M. Gasson, "ICT implants: The invasive future of identity?, " Advances in Information and Communication Technology, vol. 262, pp. 287-295, 2008.

13. K. D. Stephan, et al., "Social Implications of Technology: Past, Present, and Future, " Proceedings of the IEEE, vol. 100, pp. 1752-1781 2012.

14. R. Kumar. (2011, June 1, 2012). India's Big RFID Adoption Challenges. Available: http://www.rfidjournal.com/article/articleview/8145/1/82/

15. L. Radha, "Deployment of RFID (Radio Frequency Identification) at Indian academic libraries: Issues and best practice. , " International Journal of Library and Information Science, vol. 3, pp. 34-37, 2011.

16. H. Saranga, et al. (2010, June 2, 2012). Scope for RFID Implementation in the Indian Auto Components Industry. Available: http://tejasiimb. org/articles/73.php

17. N. LaVigne, "An evaluability assessment of RFID use in correctional settings, " in Final report submitted to the National Institute of Justice, ed. Washington DC: USA, 2006.

18. R. Halberstadt and N. LaVigne, "Evaluating the use of radio frequency identification device (RFID) technology to prevent and investigate sexual assaults in a correctional setting, " The Prison Journal, vol. 91, pp. 227-249, 2011.

19. A. Masters and K. Michael, "Lend me your arms: The use and implications of humancentric RFID, " Electronic Commerce and Applications, vol. 6, pp. 29-39, 2007.

20. K. Albrecht and L. McIntyre, Spychips: How Major Corporations and Government Plan to Track Your Every Purchase and Watch Your Every Move. New York: Plume, 2006.

21. A. Friggieri, et al., "The Legal Ramifications of Microchipping People in the United States of America-A State Legislative Comparison, " in IEEE International Symposium on Technology and Society (ISTAS '09), Phoenix, Arizona, 2009.

22. G. G. Assembly. (2010, January 12, 2011). Senate Bill 235. Available: http://www1.legis.ga.gov/legis/2009-10/versions/sb235-As-passed-Se nate-5.htm

23. M. G. Michael and K. Michael, "Towards a State of Uberveillance, " IEEE Technology and Society Magazine, vol. 29, pp. 9-16, 2010.

24. S. Rodota and R. Capurro, "Opinion n020: Ethical aspects of ICT Implants in the human body, " in European Group on Ethics in Science and New Technologie (EGE), ed, 2005.

25. C. Perakslis and R. Wolk, "Social acceptance of RFID as a biometric security method, " IEEE Symposium on Technology and Society Magazine, vol. 25, pp. 34-42, 2006.

26. C. Perakslis, "Consumer Willingness to Adopt RFID Implants: Do Personality Factors Play a Role in the Acceptance of Uberveillance?, " in Uberveillance and the Social Implications of Microchip Implants, M. G. Michael and K. Michael, Eds., ed Hershey, PA: IGI Global, 2014, pp. 144-160.

27. A. Donoghue. (2010, March 2, 2010). CeBIT: Quarter Of Germans Happy To Have Chip Implants. Available: http://www.techweekeurope.co.uk/news/cebit-quarter-of-germanshappy-to-have-chip-implants-5590

28. R. Achille, et al., "Ethical Issues to consider for Microchip Implants in Humans, " Ethics in Biology, Engineering and Medicine vol. 3, pp. 77-91, 2012.

29. S. Das. (2009, May 1, 2012). Surveillance: Big Brothers Watching. Available: http://dqindia.ciol.commakesections.asp/09042401.asp

30. M. Krepon and N. Cohn. (2011, May 1, 2012). Crises in South Asia: Trends and Potential Consequences. Available: http://www.stimson.org/books-reports/crises-in-south-Asia-trends-Andconsequences

31. C. Jung, Psychological types. Princeton, NJ: Princeton University Press, 1923 (1971).

32. M. Rothensee and S. Spiekermann, "Between Extreme Rejection and Cautious Acceptance Consumers' Reactions to RFID-Based IS in Retail, " Science Computer Review, vol. 26, pp. 75-86, 2008.

33. K. Michael and M. G. Michael, "The Future Prospects of Embedded Microchips in Humans as Unique Identifiers: The Risks versus the Rewards, " Media, Culture &Society, vol. 35, pp. 78-86, 2013.

34. WND. (October 2, 2006, May 13, 2014). Employees Get Microchip Implants. Available: http://www.wnd.com/2006/02/34751/

35. K. Michael, "Citywatcher.com, " in Uberveillance and the Social Implications of Microchip Implants, M. G. Michael and K. Michael, Eds., ed Hershey, PA: IGI Global, 2014, pp. 133-143.

36. K. Michael, et al., "Microchip Implants for Employees in the Workplace: Findings from a Multi-Country Survey of Small Business Owners, " presented at the Surveillance and/in Everyday Life: Monitoring Pasts, Presents and Futures, University of Sydney, NSW, 2012.

37. M. N. Gasson, et al., "Human ICT Implants: Technical, Legal and Ethical Considerations, " in Information Technology and Law Series vol. 23, ed: Springer, 2012, p. 184.

38. S. O. Hansson, "Implant ethics, " Journal of Med Ethics, vol. 31, pp. 519-525, 2005.

39. K. Albrecht, "Microchip-induced tumours in laboratory rodents and dogs: A review of literature, " in Uberveillance and the Social Implications of Microchip Implants, M. G. Michael and K. Michael, Eds., ed Hershey, PA: IGI Global, 2014, pp. 281-318.

Keywords: Radiofrequency identification, Implants, Educational institutions, Organizations, Access control, Australia, transponders, authorisation, microprocessor chips, organisational aspects, radiofrequency identification, institutional microchips, perceived barriers, microchips implant, transnational study, small business owners, RFID transponders, radio frequency identification transponders, employee ID, chip implants,access control, organizations, chi-square analysis, technological issues, philosophical issues, health issues, religious issues, social issues, digital divide, cultural issues, USA, RFID, radio frequency identification, implants, microchips, uberveillance, barriers, access control, employee identification, security, small business, Australia, India, UK

Citation: Christine Perakslis, Katina Michael, M. G. Michael, Robert Gable, "Perceived barriers for implanting microchips in humans", 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), Date of Conference: 24-26 June 2014, Date Added to IEEE Xplore: 08 September 2014. DOI: 10.1109/NORBERT.2014.6893929