Go Get Chipped - Part 1

For over 20 years, MG Michael and I have been researching the social implications of microchipping people. In 1996 as part of a final year major project in my Bachelor of Information Technology degree at the University of Technology, Sydney, I researched the potential for government identifiers to be implanted in the human body, with supervisor Prof. Jenny Edwards [1].


Influenced greatly by the early works of Roger Clarke [2] and Simon Davies [3] in Australia, I became especially interested in “where to next?” A single image I had come across in the Library of Andersen Consulting headquarters in North Sydney while in my cooperative employment semester in April 1996, has stuck with me ever since. Depicted in a cartoon figure was the body of a man, with a computer “head.” No eyes, no ears, just a blank cathode ray tube (CRT). The headline of that report read: “The Human Metaphor” [4]. In December of that year I found myself working as a graduate engineer at Nortel Networks.

In 1997 Eduardo Kac became the first human to implant himself with a non-medical device in the performance art work titled “Time Capsule” [5]. After injecting an implant above his left ankle, Kac went on to register himself on a pet database. This performance piece was streamed live on the Internet. One year later in 1998 the company I worked for sponsored the Cyborg 1.0 project at the University of Reading and continued support for Cyborg 2.0, alongside Tumbleweed Communications, Computer Associates, and Fujitsu [6]. I learned of this cyborg project through the company's global hardcopy newspaper. I remember sitting at my desk turning to the back page and reading a short column about how implantables were destined to be our future. At the time I had begun a Ph.D. on the topic of “Smart Card Innovation in Government Applications,” but quickly redirected my focus to holistically study major automatic identification innovations, inclusive of chip implants. Dr. Ellen McGee and Dr. Gerald Q. Maguire, Jr., had begun to research ethical and policy issues around implantable brain chips as early as 2001, but I was more preoccupied in how this technology could be used for everyday banking and telecommunications applications as a blackbox implantable in the arm or upper torso.

Prof. Kevin Warwick had become the first academic to be implanted with a cylindrical transponder that not only identified him but also located him in his building [7]. After rigging up the corridors of the Cybernetics Department at the University of Reading, an interactive map would locate Warwick as he walked throughout the building. His office was also rigged up with readers, so that his presence was somewhat ambient — as he walked into the room, the lights would switch on and his computer would turn on to his favorite webpage. In 1999 British Telecom's Peter Cochrane wrote Tips for Time Travellers in which he described a microchip implant akin to something he noted would be a “soul catcher chip” [8]. The year Cochrane's monograph was published, the Auto-ID Center consortium at M.I.T. formally began research on the “Internet of Things,” a term coined by former Procter and Gamble assistant brand manager, Kevin Ashton [9]. Cyborg 2.0 followed on March 14, 2002, when Warwick had a one hundred electrode array surgically implanted into the median nerve fibers of his left arm [10]. Here Warwick showed the potential of brain-to-computer interfaces (BCI) but also the potential of brain-to-brain interfaces (BBI). During this whole period, I was busy working on projects related to telecommunications deregulation across Asia, seeing firsthand the right angle turn from voice to data, and the explosion of mobile telephony and later 3G mobile infrastructure. The world was changing rapidly and I knew I had to finish my Ph.D. as soon as possible. As chance would have it, I headed for academia.

Post the dot.com crash, we were all shocked by scenes such as those of September 11, 2001. It did not take long for people to emphasize the importance of security, and how to address risk on a large scale. Companies like Applied Digital Solutions [11], and later VeriChip Corporation [12] and Positive ID [13], described the potentiality of a unique ID being embedded in the right tricep. This was no myth. Applied Digital Solutions received U.S. Food and Drug Administration (FDA) approval for a personal health record identifier in 2004 [14]. The CEO of the VeriChip Corporation (and later PositiveID), Scott Silverman, pointed to the many benefits of such an implantable. He noted the possibility of such a device being tethered to an electronic bracelet being able to help first responders get out of hopeless situations, like a burning tower that was about to collapse. There were 2996 people killed and more than 6000 others wounded in the September 11 attacks. Silverman emphasized the potential for saving people who were incapacitated and could not tell first responders about their condition [15]. Situations could range from people having an allergy to penicillin, diabetics requiring insulin, or even wander alerts for those suffering from dementia. VeriChip was successful in some high profile chippings, such as New Mexico's Attorney General Rafael Macedo and some of his staff [16], in addition to the Baja Beach club chain in both Rotterdam and Barcelona [17], and later in the small number of voluntary employee chippings at Citywatcher.com [18].

Apart from my thesis in 2003 [19], numerous papers written by academics became available on the chipping phenomenon in 2004 [20], and 2005 [21], including a landmark monograph titled SpyChips [22] written by Dr. Katherine Albrecht and Liz McIntyre. There were several attempts to chip Alzheimer's patients at aged care facilities in 2007, which did not go ahead en masse [23]. Christine Perakslis and the late Robert Wolk wrote pioneering papers on microchipping humans after the VeriChip was FDA approved [24]. In the same year, the EU Opinion N° 20 on “Ethical Aspects of ICT Implants in the Human Body” was published, written by The European Group on Ethics in Science and New Technologies (EGE) chaired by the Swedish philosopher, Göran Hermerén, and adopted on March 16, 2005 [25]. Among the Group were Professors Rafael Capurro and the late Stefano Rodotà.

For the greater part of the mid 2000s and later, we observed a growing number of biohackers who chose to dabble in “DIY” (do-it-yourself) implantable technology. The Tagged Forum was set up to accommodate fellow tinkerers at the beginning 2006, which became the “go” to” place for learning about how to tinker with RFID implants and what applications to build with them. The Forum soon attracted more attention than it cared for, and was targeted with posts proclaiming members were heralding in the “mark of the beast.” As a result, The Tagged went underground, so they could be left alone to continue tinkering. Building on cross-disciplinary study from as far back as the 1980s [26], MG Michael coined the term “uberveillence” in 2006 denoting embedded surveillance devices, while teaching at the University of Wollongong [27]. An entry on uberveillance later appeared in the Macquarie Dictionary in 2008 [28], proliferating quickly across the web including in The New York Times [29]. In that same year, Pawel Rotter et al. published their paper titled: “RFID implants: Opportunities and challenges for identifying people” in IEEE Technology and Society Magazine (vol. 27, no. 2).

In 2007 M.G. Michael interviewed Professor Kevin Warwick [30], and biomedical device expert Professor Christopher Toumazou, Director of the Biomedical Institute at Imperial College London [31]. Among the popular implantees of that time were Amal Graafstra, Jonathan Oxer and Mikey Skylar. Graafstra was the author of RFID Toys, and was featured in an IEEE Spectrum issue in 2007 [32]. We invited him as a speaker to the IEEE International Symposium on Technology and Society in 2010 [33] which was dedicated to implantables, and co-wrote a paper on implants published in the Proceedings of the conference [34]. An excellent debate on the future of microchipping people using RFID was chaired at ISTAS'10 by William A. Herbert [45]. Months prior to ISTAS'10, I interviewed both the IT Manager responsible for creating the e-payment application at Baja Beach Club [35], and the consultant to Citywatcher.com [36]. These primary interviews formed key foundations into the larger inquiry. By 2009 [37] and 2014 [38], Michael and Michael had authored and co-edited large reference volumes on the social implications of chip implants and dozens of peer reviewed research papers with colleagues and students at UOW (e.g., [39]). In between these two studies, Dr. Mark Gasson had also co-edited and excellent Springer publication in 2012, on Human ICT Implants: Technical, Legal and Ethical Considerations [40]. He was the General Chair of ISTAS'10 at the University of Wollongong, and presented a paper on the potential for humans bearing implants to become infected with a computer virus [41]. At this time, it was clear that IEEE SSIT was drawing in specialists not just in cross-disciplinary fields, but also encouraging proponents of the technology to consider the sociotechnical implications.

In mid-August 2017, I returned from the outstanding IEEE Sections Congress 2017 that was hosted in the International Convention Center in Sydney. I cannot speak highly enough of this event. I presented as part of a panel chaired by SSIT Past President Greg Adamson on “Addressing Social Challenges to Technology” and spoke on the attention that non-medical implantables have received in recent times when compared with the previous decade. Out of the 50+ people present in the room only 4 people raised their hands when I asked the question “would anyone in this room get chipped” [42]? It is important to note that all of the people present were tech-savvy, many of them were entrepreneurs, working in industry or in academia. I contrasted this figure with the very unbelievable figures cited in The Australian that said a survey of 10 000 Pricewater-houseCoopers employees across major economies found 70 per cent would consider using “treatments to enhance their brain and body if this improved their employment prospects” [43]. I made the point that we need to challenge such “claims.” I also made the point that IEEE SSIT has been working in the emerging technology domain asking critical questions since its creation and has had much to do with the study of medical and non-medical embedded devices. That for us as SSIT members, speaking on emerging technologies is not new, and researching them using a plethora of approaches is something we are entirely comfortable with — legal, technical, societal, economic, etc. [44]. I urged people in the room to become members of SSIT, to bring their expertise to such urgent subject areas, to discuss the pros and cons, and add know-how where it was needed — e.g. spectrum, regulatory, health, business, etc. In the December 2017 issue of T&S Magazine, I will continue with a Part 2 to this editorial covering progress in the implantables domain since 2013 urging members to construct projects that will further interrogate the complexities of our technological trajectory.

We should remember and celebrate the contributions of our members and non-members to our Magazine, our annual conference and workshops, specific projects, and papers. Please search our corpus of outcomes on our upgraded web site which now contains a lot of free material, cite them in the future, and challenge people when they tell you that “x” or “y” is “brand new” or “has never been researched before.” It is a golden opportunity to connect people to SSIT, and bring in new expertise and volunteers to focus on our Five Pillars. We must know ourselves better, if we are to expect others to know who we are and what we stand for.


1. K. Michael, The future of government identifiers, Sydney, Australia:School of Computing and Mathematical Sciences, University of Technology, Nov. 1996.
2. R. Clarke, "Information technology and dataveillance", Commun. ACM, vol. 31, no. 5, pp. 498-512, 1988.
3. S. Davies, Big Brother: Australia's Growing Web of Surveillance, East Roseville, NSW:Simon & Schuster, 1992.
4. R. Tren, "Trends in the cards industry", Andersen Consulting, pp. 1-99, 1995.
5. E. Kac, "Event in which a microchip (identification transponder tag) was implanted in the artist's left ankle" in Time Capsule, São Paulo, Brazil:Casa das Rosas Cultural Center, 1997, [online] Available: http://www.ekac.org/timec.html.
6. K. Warwick, M. Gasson, B. Hutt et al., "The application of implant technology for cybernetic systems", Arch Neurol., vol. 60, no. 10, pp. 1369-1373, 2003.
7. K. Michael, E. Lawrence, J. Lawrence, S. Newton, S. Dann, B. Corbitt, T. Thanasankit, "The automatic identification trajectory" in Internet Commerce: Digital Models for Business, Australia:Wiley, pp. 131-134, 2002.
8. P. Cochrane, Tips for Time Travelers, McGraw-Hill, pp. 7-57, 1999.
9. About the lab, Auto-ID Labs, [online] Available: https://autoid.mit.edu/about-lab.
10. Kevin Warwick, Project Cyborg 2.0: The next step towards true Cyborgs?, [online] Available: http://www.kevinwarwick.com/project-cyborg-2-0/.
11. J. Lettice, "First people injected with ID chips sales drive kicks off", The Register, [online] Available: https://www.theregister.co.uk/2002/06/10/first_people_injected_with_id/.
12. K. Albrecht, "Implantable RFID chips: Human branding", CASPIAN, [online] Available: http://www.antichips.com/what-is-verichip.htm.
13. Positive ID, Wikipedia, [online] Available: https://en.wikipedia.org/wiki/PositiveID.
14. Medical devices; general hospital and personal use devices; Classification of implantable radiofrequency transponder system for patient identification and health information, Department of Health and Human Services: FDA, [online] Available: https://www.fda.gov/ohrrns/dockets/98fr/04-27077.htm.
15. "Implantable personal verification systems", ADSX, [online] Available: http://www.adsx.com/prodservpart/verichip.html.
16. Mexican officials get chipped, Wired, [online] Available: https://www.wired.com/2004/07/mexican-officials-get-chipped/.
17. K. Michael, M.G. Michael, "The diffusion of RFID implants for access control and epayments: A case study on Baja Beach Club in Barcelona", Proc. IEEE Int. Symp. Technology and Society, pp. 242-252, 2010.
18. K. Michael, MG Michael, "The future prospects of embedded microchips in humans as unique identifiers: The risks versus the rewards", Media Culture and Society, vol. 35, no. 1, pp. 78-86, 2013.
19. K. Michael, The technological trajectory of the automatic identification industry: the application of the systems of innovation (SI) framework for the characterisation and prediction of the auto-ID industry, 2003.
20. K. Michael, MG Michael, "Microchipping people: The rise of the electrophorus", Quadrant, vol. 49, no. 3, pp. 22-33, Mar. 2005.
21. K. Michael, A. Masters, "Applications of human transponder implants in mobile commerce", Proc. 8th World Multiconterence on Systemics Cybernetics and Informatics, pp. 505-512, Jul. 2004.
 Show Context  
22. K. Albrecht, L. McIntyre, "Spychips: How major corporations and government plan to track your every purchase and watch your every move" in Nelson Current, Nashville, TN:, 2005.
23. "Alzheimer's patients lining up for microchip", ABC News, [online] Available: http://abcnews.go.com/GMA/OnCall/story?id=3536539.
24. C. Perakslis, R. Wolk, "Social acceptance of RFID as a biometric security method", Proc. Int. Symp. Technology and Society, pp. 79-87, 2005.
25. Ethical aspects of ICT implants in the human body: Opinion presented to the Commission by the European Group on Ethics, [online] Available: europa.eu/rapid/press-release_MEMO-05-97_en.pdf.
26. M.G. Michael, "Demystifying the number of the beast in the Book of Revelation: Examples of ancient cryptology and the interpretation of the “666” conundrum", Proc. IEEE Int. Symp. Technology and Society, pp. 23-41, 2010.
27. M.G. Michael, "On the virth of Uberveillance", Uberveillance.com, [online] Available: http://uberveillance.com/blog/2012/2/15/on-the-blrth-of-uberveillance.html.
28. M.G. Michael, K. Michael, S. Butler, "Uberveillance" in Fifth Edition of the Macquarie Dictionary, Australia's National Dictionary, Sydney University, pp. 1094, 2009.
29. Schott's Vocab, Uberveillance, The New York Times, [online] Available: https://schott.blogs.nytimes.com/2009/02/04/uberveillance/.
30. M.G. Michael, Kevin Warwick, The Professor who has touched the future, Feb. 2007, [online] Available: http://www.katinamichael.com/interviews/2014/1/23/the-professor-who-has-touched-the-future.
31. M.G. Michael, Christofer Toumazou, The biomedical pioneer, Oct. 2006, [online] Available: http://www.katinamichael.com/interviews/2014/1/23/the-biomedical-pioneer.
32. A. Graafstra, "Hands on - How RFID and I got personal", IEEE Spectrum, [online] Available: http://spectrum.ieee.org/computing/hardware/hands-on.
33. A. Graafstra, Invited Presentation on RFID Implants IEEE ISTAS '10, [online] Available: https.//www.youtube.com/watch?v=kraWt1adY3k.
34. A. Graafstra, K. Michael, M.G. Michael, K. Michael, "Social-technical issues facing the humancentric RFID implantee sub-culture through the eyes of Amal Graafstra", Proc. IEEE Symp. on Technology and Society, pp. 498-516, 2010.
35. K. Michael, Serafin Vilaplana, The Baja Beach Club IT Manager;, [online] Available: http://www.katinamichael.com/interviews/2015/3/20/r8vw5tpv8rr9tieeg7kgvej2racs5v.
36. K. Michael, Gary Retherford, The microchip implant consultant, [online] Available: http://www.katinamichael.com/interviews/2015/3/20/gary-retherford-the-microchip-implant-consultant.
37. K. Michael, M.G. Michael, Innovative Automatic Identification and Location-Based Services: From Bar Codes to Chip Implants., Hershey, PA: IGI, 2009.
38. M.G. Michael, K. Michael, Uberveillance and the Social Implications of Microchip Implants: Emerging Technologies., Hershey, PA:IGI, 2013.
39. A. Friggieri, K. Michael, M.G. Michael, "The legal ramifications of micro-chipping people in the United States of America-A state legislative comparison", Proc. IEEE Int. Symp. Technology and Society, pp. 1-8, 2009.
40. M.N. Gasson, E. Kosta, D.M. Bowman, Human ICT Implants: Technical Legal and Ethical Considerations, The Hague, The Netherlands: Springer, 2012.
41. M.N. Gasson, "Human enhancement: Could you become infected with a computer virus?", Proc. IEEE Int. Symp. Technology and Society, pp. 61-68, 2010.
42. K. Michael, "The pros and cons of implantables", IEEE Sections Congress 2017, Aug. 2017, [online] Available: https://www.youtube.com/watch?v=2J3NqhVmWuc.
43. E. Hannan, S. Fox Koob, "Worker chip implants ‘only matter of time’", theaustralian com, Aug. 2017, [online] Available: http://www.theaustralian.com.au/business/technology/worker-chip-implants-only-matter-of-tlme/news-story/If9f9317cc84f365410a089566153f51.
44. Jeremy Pitt, This Pervasive Day: The Potential and Perils of Pervasive Computing, London, U.K.:World Scientific, 2012.
45. "The debate over microchipping people with ICT implants", IEEE ISTAS 2010 @ UOW - Panel Discussion YouTube, Mar. 2011, [online] Available: https://www.youtube.com/watch?v=dl3Rps-VFdo.


implants, Radiofrequency identification, Mobile communication, National security, Surveillance, Integrated circuits

Citation: Katina Michael, 2017, "Go Get Chipped?: A Brief Overview of Non-Medical Implants between 1997-2013 (Part 1)", IEEE Technology and Society Magazine, 36(3), pp. 6-9.

Mental Health, Implantables, and Side Effects

Then I was 8 years of age my older sister who was 8 years my senior was diagnosed with paranoid schizophrenia. As a result, my family spent quite a few years visiting hospitals and mental health facilities on a daily basis. It is painful to reflect on that period, as our whole world was rocked by this illness. My once vibrant, skilful, dynamic, energetic, extremely kind, and top-of-her-class sister was plagued by a disease process of schizophrenia that would have her attempting to take her own life on several occasions, battle with hearing voices, go into a state of catatonia for long periods of time, and suffer severe bouts of anxiety and depression.

The onset of my sister's schizophrenia was spontaneous, during what should have been the most carefree years of her life. We will never know what triggered her illness but for whatever reason that this “thing” landed in our household, we learned to come to terms with its impact. I grew up with an understanding that, in life, there are some things we can fix, and some things we cannot. There are some things we can explain, and some things we cannot. Sometimes medical science has the answers, and sometimes it does not. It does not mean I give up on the potential for a cure or therapy for various forms of mental illness, but I am more wary than most about silver bullet solutions.

In the 30 years my sister has lived with schizophrenia there have been numerous incremental innovations that have been beneficial to some sufferers. First, there have been advancements in pharmacology and in the composition of antidepressants so that they are more effective. But pharmaceutical treatments have not helped everyone, especially those sufferers who do not take their medication on a regular basis. Many persons living with depression who come on and off antidepressants without seeking medical advice are at an increased risk of suicide.

Cognitive behavior therapy (CBT), an empirically-based psychotherapy, has also aided increasing numbers of patients to better cope with their condition. Yet CBT is not given the same media attention as the new range of dynamic neural stimulators, commonly dubbed “brain implants,” now on the market [1].

For sufferers who are diagnosed with major depressive disorder (MDD), and for whom antidepressants and CBT simply do not work, doctors have turned to the prospect of somatic therapies. These include: electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS). If an individual does not respond to ECT (and only fifty per cent do), they are said to have treatment-resistant depression (TRD) [2].

In plain language, ECT is when electricity is applied to the scalp generally over a treatment period of between 2-4 weeks, several sessions per week. rMTS treatment goes for 4-6 weeks, of 5 sessions per week and uses a fluctuating magnetic field from electromagnetic coil placed outside the skull sending an electrical current to the brain.

VNS and DBS are more intrusive procedures targeting specific parts of the brain [3]. In VNS, an electrode is wrapped around the left vagus nerve in the neck and stimulation occurs about every 5 minutes for about 30 seconds. The battery packs sit under the skin of the chest in both VNS and DBS, but in the DBS procedure, one or more leads are implanted in the brain, targeted through burr holes in the skull, and locked into place [2].

VNS and DBS were unavailable techniques when my sister first became ill, but I do recollect vividly the results of ECT upon her. Post the treatments, we lost her well and truly into a dark space one cannot reach she was placed on higher dosages of antidepressants for the weeks to follow, and it was apparent to us she was not only in mental anguish but clearly in physical difficulties as well. Doctors claimed clinically that she “did not respond to the treatment,” but never acknowledged that the ECT process might have caused her any short-term distress whatsoever. In fact, we were told: “There is no change in her condition. She continues to be as she was before the treatment.” That was debatable in my eyes. Even though I was just a kid, I observed it took a good three months to get my sister back to where she was before the ECT treatment. But she was only one participant among many in clinical trials, and in no way do I generalize her outcomes to be the outcomes of all ECT patients.

VNS and DBS are again very different techniques, and while VNS is used as an adjunct therapy for major depression, DBS is mainly reserved for treating Parkinson's disease and has had only limited approval for combatting intractable obsessive compulsive disorder (OCD). However, what I gained from those childhood experiences is that human life is precious and experimentation can have some very adverse side effects without any direct benefits to the individual sufferer. Doctors need to be held accountable, caregivers and patients with MDD must be told clearly about the risks, and VNS patients must be monitored closely into the longer-term. I am alarmed at the lack of qualitative research being conducted across the spectrum of implantable devices in the health sector. And that is an area I intend to personally address in my own research in years to come.

To this day, I believe my sister was in no condition to consent to the treatment she received. At the time she intermittently thought I was Brooke Shields and that my siblings were other television personalities. She was delusional and completely unaware of herself. Prior to the trial my sister participated in, my parents had no real idea what ECT was, save for what they had heard anecdotally. As my sister's “guardians,” my parents did not understand how ECT would be administered and were not given the option to accompany her during the actual treatment. They were simply told that my sister would wear something on her head and have an electrical current travel all around it to hopefully “zap” her back to normal. They were not informed of what the risks might be to their beloved daughter, although they were clear it was all “experimental.” It was also emphasized, that this “electro-shock treatment” was the only other alternate route of exploration to help my sister get better. I remember their expectations being raised so high, only to be dashed after each treatment [4]. My parents had to rely on an interpreter as my father did not speak English and my mother only broken English. When one was not available my brother and sisters and I would do the translation.

In the end, when all other routes failed, my family turned to God for help. Alongside an excellent medical and health team (psychiatrist, social worker, general practitioner), and a loving home environment, it was faith that gave my family the will to go on facing everyday issues, as my sister slowly regained parts of herself to become functional again, such as her mobility and speech. As the saying goes “prayer works,” and while it might not make rational sense to believe in miracles, I remember witnessing these on at least a few occasions.

A few months ago, the cover of the February 2015 issue of IEEE Spectrum was graced with the title: “Hot-wiring the nervous system: implanted in the brain, smart-systems are defeating neurological disorders” (pp. 28) [5]. As someone who has spent the greater part of their academic career studying surveillance, risk, privacy and security, trust, and control, I have long reckoned that if we can “defeat” neurological disorders using implantable devices, then we can also “construct” and “trigger” them willingly, as well. But the point of my editorial is not to discuss the future of dynamic neural stimulators; we can debate that in another issue of T&S Magazine. Rather my point is to try to generate discussion about some of the fundamental issues surrounding the socio-ethical implications of penetrating the brain with new technologies, especially those that are remotely triggerable [6].

While the early studies for VNS with respect to MDD look promising, we need to acknowledge we are still at the very beginning of our investigations. I am personally more circumspect about published figures that simply categorize subjects post implantation using minimal labels like “non-responders,” “responders” and “achieved remission” [7]. Longitudinal data will give us a clearer picture of what is really happening. DBS, on the other hand, has been used to treat well over 75 000 persons, mostly suffering from movement disorders [2], but it is increasingly being piloted to treat OCD [8]. This is a call to the research community, to publish more widely about some of the complications, side effects, and resultant social life changes that implantees (of all kinds) are faced with post-surgery.

I am not referring here to issues related to surgical implantation (e.g., symptomatic haemorrhage after electrode placement), or even device failure or hardware-related complications (of which I have great concerns that there will be severe hacking problems in the future). Rather, I am referring to the resultant effect of “artificially constructed” dynamic stimulation on the human brain and its impact on an individual. In short, these are the unintended consequences, that range in scope from psychotic symptoms post stimulation (e.g., for epilepsy, or for patients presenting with auditory hallucinations for the first time), to modifications in sleep patterns, uncontrolled and accidental stimulation of other parts of body function [9], hypersexuality, hypomania [10], changes to heart and pulse rates, and much more.

Many implantees resort to social media to share their pre-and post-operative experiences. And while this is “off the record” self-reporting, clearly some of these discussions warrant further probing and inquiry. My hope is that the copious note-taking that occurs during pilots and clinical trials, specifically with respect to side effects, will be more accessible in the form of peer reviewed publication for doctors, engineers, government officials, standards organizations, regulatory approval bodies, and of course, the general public, so that we can learn more about the short-term and long-term effects of neural stimulation devices.

One patient, as a result of a particular procedure in a DBS pilot study described a sensation of feeling hot, flushed, fearful, and “panicky.” “He could feel palpitations in his chest, and when asked indicated he had an impending sense of doom. The feelings were coincident and continuous with the stimulator ‘on’ setting and they rapidly dissipated when switched ‘off'” [11]. Surely, this kind of evidence can be used to inform stakeholders towards what works and what does not, and the kinds of risks a patient may be exposed to if they opt-in, even if we know the same state will not be experienced by every patient given the complexity of the brain and body. In the more mature heart pacemaker industry, it is device manufacturers who tend to wish to hoard the actual physiological data being recorded by their devices [12], [13]; the brain implant industry will likely follow suit.

To conclude this editorial, at the very least, I would like to echo the sentiments of Fins et al., that deep brain stimulation is a “novel surgical procedure” that is “emerging,” and should presently be considered a last resort for people with neuropsychiatric disorders [14]. There needs to be some tempering of the hype surrounding the industry and we need to ensure that rigor is reintroduced back into trials to minimize patient risk. Exemptions like that granted by the U.S. Food and Drug Administration (FDA) on the grounds of a “humanitarian device” allow implant device manufacturers to run trials that are not meaningful because the size of the trial is inappropriate, lacking commensurate statistical power [14]. The outcomes from such trials cannot and should not be generalized.

I would go one step further, calling not only for adherence to more careful research requirements during clinical trials, but also urging the medical community in general to really think about the direction we are moving. If medical policies like these [15] exist, clearly stating that “there is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with [vagus nerve stimulation] … for depression” then we must introduce major reforms to the way that consent for the procedure is gained.

Between 1935 and 1960, thanks to a rush of media (and even academic coverage), lobotomies were praised for the possibilities they gave patients and their relatives [16]. Although I am not putting lobotomies on the same level as VNS and DBS, I am concerned about placing embedded devices at the site of the most delicate organ in the human body. If we can “switch on” certain functions through the brain, we can also “switch them off.”

It is clear to anyone studying emerging technologies, that the future trajectory is composed of brain implants for medical and non-medical purposes. Soon, it won't be just people fighting MDD, or OCD, epilepsy [17], [18], Parkinson's disease [19] or Tourette's Syndrome who will be asking for brain implants, but everyday people who might wish to rid themselves of memory disorders, aggression, obesity, or even headaches. There is also the potential for a whole range of amplified brain technologies that make you feel better – diagnostic devices that pick up abnormalities in physiological patterns “just-in-time,” and under-the-skin secure identification [20]. And while the current costs for brain implants to fight mental illness are not cheap, at some $25 000 USD each (including the end-to-end surgical procedure), the prices will ultimately fall [1]. Companies like Medtronics are talking about implanting everyone with a tiny cardiac monitor [21]; it won't take long for the same to be said about a 24×7 brain monitor, and other types of daily “swallowable” implants [22].

Fears related to embedded surveillance devices of any type may be informed by cultural, ethical, social, political, religious concerns that must be considered during the patient care process [23]. Fully-fledge uberveillance, whether it is “surveillance for care” or “surveillance for control” might well be big business in the future [24], but for now academicians and funding bodies should be less interested in hype and more interested in hope.


1. S. Upson, "A difficult time for depression devices", IEEE Spectrum, pp. 14, May 2008.

2. W. K. Goodman, R. L. Alterman, "Deep brain stimulation for intractable psychiatric disorders", Annu. Rev. Med., vol. 63, pp. 511-524, 2012.

3. P. Kotagal, "Neurostimulation: Vagus nerve stimulation and beyond", Seminars in Pediatric Neurology, vol. 18, pp. 186-194, 2011.

4. V. Johansson, "Beyond blind optimism and unfounded fears: Deep brain stimulation for treatment resistant depression", Neuroethics, vol. 6, pp. 457-471, 2013.

5. T. Denison, "Building a bionic nervous system: Smart neural stimulators sense and respond to the body's fluctuations", IEEE Spectrum, pp. 28-35, Feb. 2015.

6. W. Glannon, "Stimulating brains altering minds", J. Medical Ethics, vol. 35, pp. 289-292, 2009.

7. T. Schlaepfer, J. Fins, "Deep brain stimulation and the neuroethics of responsible publishing: when one is not enough", JAMA, vol. 303, pp. 775-776, 2010.

8. B. Aouizerate, "Deep brain stimulation for OCD and major depression", Amer. J. Psychiatry, vol. 162, pp. 2192, 2005.

9. P. Moore, "Enhancing Me: The Hope and the Hype of Human Enhancement" in , Wiley, 2008.

10. C. Ch, "Hypomania with hypersexuality following bilateral anterior limb stimulation in obsessive-compulsive disorder", J. Neurosurg., vol. 112, pp. 1299-1300, 2010.

11. S. Na, "Panic and fear induced by deep brain stimulation", J. Neurol. Neurosurg Psychiatry, vol. 77, pp. 410-12, 2006.

12. J. Carvalko, "The Techno-Human Shell: A Jump in the Evolutionary Gap" in , Sunbury, 2013.

13. J. Carvalko, "Who should own in-the-body medical data in the age of ehealth?" in IEEE Technology & Society Mag., Summer, pp. 36-37, 2014.

14. J. Fins, "Misuse of the FDA's humanitarian device exemption in deep brain stimulation for obsessive-compulsive disorder", Health Aff. (Millwood), vol. 30, pp. 302-311, 2011.

15. C. Blue, "Medical Policy: Implantable Eletrical Nerve Stimulators (Vagus Autonomic Nerve and Peripheral Nerve Stimulators)", 2014, [online] Available: https://www.capbluecross.com/wps/wcm/connect/73f7fba6-65df-4f7f-a35c-acc4d805a066/Implantable_Electrical_Nerve_Stimulators_3-25-14.pdf?MOD=AJPERES.

16. G. J. Diefenbach, "Portrayal of lobotomy in the popular press: 1935–1960", J. History of the Neurosciences, vol. 8, pp. 60-70, 1999.

17. C. M. DeGiorgio, "Pilot study of trigeminal nerve stimulation (TNS) for epilepsy: A proof-of-concept trial", Epilepsia, vol. 47, pp. 1213-1215, 2006.

18. A. Schulze-Bonhage, V. Coenen, "Treatment of epilepsy: peripheral and central stimulation techniques", Nervenartz, vol. 84, pp. 517-528, 2013.

19. E. Strickland, "How brain pacemakers treat parkinson's disease", IEEE Spectrum, Apr. 2015, [online] Available: http://spectrum.ieee.org/tech-talk/biomedical/devices/new-clues-how-does-a-brain-pacemaker-control-parkinsons-symptoms.

20. K. Michael, Microchipping People, 2012.

21. E. Strickland, "Medtronic wants to implant sensors in everyone", IEEE Spectrum, Jun. 2014, [online] Available: http://spectrum.ieee.org/tech-talk/biomedical/devices/medtronic-wants-to-implant-sensors-in-everyone.

22. "Google director Regina E. Dugan pushing RFID microchips", 2014, [online] Available: https://www.youtube.com/watch?v=RvYnWBdmcQk.

23. K. Michael, M. G. Michael, The Social Cultural Religious and Ethical Implications of Automatic Identification, 2004.

24. M. G. Michael, K. Michael, "Towards a state of Uberveillance", IEEE Technology & Society Mag., vol. 29, pp. 9-16, 2010.

Citation: Katina Michael, "Mental Health, Implantables, and Side Effects", IEEE Technology and Society Magazine, Volume: 34, Issue: 2, June 2015, pp. 5 - 17, 19 June 2015, DOI: 10.1109/MTS.2015.2434471